Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nanotechnology ; 33(47)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35961291

RESUMO

Bladder cancer has been ranked as one of the most commonly occurring cancers in men and women with approximately half of the diagnoses being the late stage and/or metastatic diseases. We have developed a novel cancer treatment by combining gold nanostar-mediated photothermal therapy with checkpoint inhibitor immunotherapy to treat bladder cancer. Experiment results with a murine animal model demonstrated that our developed photoimmunotherapy therapy is more efficacious than any individual studied treatment. In addition, we used intravital optical imaging with a dorsal skinfold window chamber animal model to study immune responses and immune cell accumulation in a distant tumor following our photoimmunotherapy. The mice used have the CX3CR1-GFP receptor on monocytes, natural killer cells, and dendritic cells allowing us to dynamically track their presence by fluorescence imaging. Our proof-of-principle study results showed that the photoimmunotherapy triggered anti-cancer immune responses to generate anti-cancer immune cells which accumulate in metastatic tumors. Our study results illustrate that intravital optical imaging is an efficient and versatile tool to investigate immune responses and mechanisms of photoimmunotherapy in future studies.


Assuntos
Ouro , Neoplasias da Bexiga Urinária , Animais , Rastreamento de Células , Imunoterapia/métodos , Camundongos , Imagem Óptica , Fototerapia/métodos
2.
Bioconjug Chem ; 30(3): 604-613, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30633508

RESUMO

The increased expression of vascular endothelial growth factor (VEGF) and its receptors is associated with angiogenesis in a growing tumor, presenting potential targets for tumor-selective imaging by way of targeted tracers. Though fluorescent tracers are used for targeted in vivo imaging, the lack of photostability and biocompatibility of many current fluorophores hinder their use in several applications involving long-term, continuous imaging. To address these problems, fluorescent nanodiamonds (FNDs), which exhibit infinite photostability and excellent biocompatibility, were explored as fluorophores in tracers for targeting VEGF receptors in growing tumors. To explore FND utility for imaging tumor VEGF receptors, we used click-chemistry to conjugate multiple copies of an engineered single-chain version of VEGF site-specifically derivatized with trans-cyclooctene (scVEGF-TCO) to 140 nm FND. The resulting targeting conjugates, FND-scVEGF, were then tested for functional activity of the scVEGF moieties through biochemical and tissue culture experiments and for selective tumor uptake in Balb/c mice with induced 4T1 carcinoma. We found that FND-scVEGF conjugates retain high affinity to VEGF receptors in cell culture experiments and observed preferential accumulation of FND-scVEGF in tumors relative to untargeted FND. Microspectroscopy provided unambiguous determination of FND within tissue by way of the unique spectral shape of nitrogen-vacancy induced fluorescence. These results validate and invite the use of targeted FND for diagnostic imaging and encourage further optimization of FND for fluorescence brightness.


Assuntos
Corantes Fluorescentes/química , Nanodiamantes/química , Neoplasias/diagnóstico por imagem , Receptores de Fatores de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/química , Animais , Química Click , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Imagem Óptica/métodos
3.
Adv Exp Med Biol ; 1136: 19-41, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31201714

RESUMO

Hypoxia, a prevalent characteristic of most solid malignant tumors, contributes to diminished therapeutic responses and more aggressive phenotypes. The term hypoxia has two definitions. One definition would be a physiologic state where the oxygen partial pressure is below the normal physiologic range. For most normal tissues, the normal physiologic range is between 10 and 20 mmHg. Hypoxic regions develop when there is an imbalance between oxygen supply and demand. The impact of hypoxia on cancer therapeutics is significant: hypoxic tissue is 3× less radiosensitive than normoxic tissue, the impaired blood flow found in hypoxic tumor regions influences chemotherapy delivery, and the immune system is dependent on oxygen for functionality. Despite the clinical implications of hypoxia, there is not a universal, ideal method for quantifying hypoxia, particularly cycling hypoxia because of its complexity and heterogeneity across tumor types and individuals. Most standard imaging techniques can be modified and applied to measuring hypoxia and quantifying its effects; however, the benefits and challenges of each imaging modality makes imaging hypoxia case-dependent. In this chapter, a comprehensive overview of the preclinical and clinical methods for quantifying hypoxia is presented along with the advantages and disadvantages of each.


Assuntos
Neoplasias/patologia , Hipóxia Tumoral , Hipóxia Celular , Humanos , Oxigênio
4.
Lasers Surg Med ; 50(3): 246-252, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29331035

RESUMO

OBJECTIVE: Optical spectroscopy offers a noninvasive alternative to biopsy as a first-line screening tool for suspicious skin lesions. This study sought to define several optical parameters across malignant and benign tissue types. STUDY DESIGN: Prospective pilot trial utilizing the Zenalux IM1 optical spectroscopy device from April 2016 to February 2017. For each skin lesion, provider pre-biopsy probability of malignancy was compared to histolopathologic diagnosis. Optical data were characterized across basal cell carcinoma (BCC; n = 9), squamous cell carcinoma (SCC; n = 5), actinic keratosis (AK; n = 4), scar tissue (n = 6), nevus (n = 2), and neurofibroma (NF; n = 1). Across all patients, agreement was determined between control measurements collected adjacent to the lesion and from the upper extremity. METHODS: Prospective single center pilot study. The optical properties of 27 cutaneous lesions were collected from 18 adult patients presenting to Otolaryngology and Dermatology clinics with suspicious skin lesions warranting biopsy. Spectroscopy measurements were recorded for each lesion: two at the lesion site, two at an adjacent site (internal control), and one at the central medial upper extremity (arm control). Variables of interest included absolute oxygenated hemoglobin (Hb), Hb saturation, total Hb concentration, and Eumelanin concentration. For each lesion, internal control averages were subtracted from lesion averages to provide delta parameter values, and lesion averages were divided by internal control averages to provide ratio parameter values. RESULTS: Mean percent difference between pre-biopsy probability of malignancy and histology was 29%, with a difference of 75% or greater seen in 5 of 25 lesions. Mean values for BCC, SCC, AK, and scar tissue varied most between extracted mean reduced scatter estimate (µa'; cm- ) delta values (BCC: -2.2 ± 3.8; SCC: -3.9 ± 2.0; AK: -3.3 ± 4.2, Scar: -1.7 ± 1.2) and total Hb (µM) ratio (BCC: 2.0 ± 3.3; SCC: 3.0 ± 1.3; AK: 1.1 ± 0.6; Scar: 1.4 ± 1.1). Agreement between local and arm controls was poor. CONCLUSION: This pilot trial utilizes optical spectroscopy as a noninvasive method for determining cutaneous lesion histology. Effect sizes observed across optical parameters for benign and malignant tissue types will guide larger prospective studies that may ultimately lead to prediction of lesional histology without need for invasive biopsy. Lasers Surg. Med. 50:246-252, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Carcinoma Basocelular/diagnóstico por imagem , Carcinoma de Células Escamosas/diagnóstico por imagem , Imagem Óptica , Neoplasias Cutâneas/diagnóstico por imagem , Análise Espectral , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Valor Preditivo dos Testes , Estudos Prospectivos
5.
FASEB J ; 30(3): 1171-86, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26631480

RESUMO

In sickle cell disease (SCD), treatment of recurrent vasoocclusive episodes, leading to pain crises and organ damage, is still a therapeutic challenge. Vasoocclusion is caused primarily by adherence of homozygous for hemoglobin S (SS) red blood cells (SSRBCs) and leukocytes to the endothelium. We tested the therapeutic benefits of MEK1/2 inhibitors in reversing vasoocclusion in nude and humanized SCD mouse models of acute vasoocclusive episodes using intravital microscopy. Administration of 0.2, 0.3, 1, or 2 mg/kg MEK1/2 inhibitor to TNF-α-pretreated nude mice before human SSRBC infusion inhibited SSRBC adhesion in inflamed vessels, prevented the progression of vasoocclusion, and reduced SSRBC organ sequestration. By use of a more clinically relevant protocol, 0.3 or 1 mg/kg MEK1/2 inhibitor given to TNF-α-pretreated nude mice after human SSRBC infusion and onset of vasoocclusion reversed SSRBC adhesion and vasoocclusion and restored blood flow. In SCD mice, 0.025, 0.05, or 0.1 mg/kg MEK1/2 inhibitor also reversed leukocyte and erythrocyte adhesion after the inflammatory trigger of vasoocclusion and improved microcirculatory blood flow. Cell adhesion was reversed by shedding of endothelial E-selectin, P-selectin, and αvß3 integrin, and leukocyte CD44 and ß2 integrin. Thus, MEK1/2 inhibitors, by targeting the adhesive function of SSRBCs and leukocytes, could represent a valuable therapeutic intervention for acute sickle cell vasoocclusive crises.


Assuntos
Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/enzimologia , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Anemia Falciforme/sangue , Anemia Falciforme/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Selectina E/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Hemoglobina Falciforme/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Integrina alfaVbeta3/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Nus , Camundongos Transgênicos , Selectina-P/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/metabolismo
6.
Biomacromolecules ; 18(2): 551-561, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28150934

RESUMO

Luminescent difluoroboron ß-diketonate poly(lactic acid) (BF2bdkPLA) materials serve as biological imaging agents. In this study, dye structures were modified to achieve emission colors that span the visible region with potential for multiplexing applications. Four dyes with varying π-conjugation (phenyl, naphthyl) and donor groups (-OMe, -NMe2) were coupled to PLLA-PEG block copolymers (∼11 kDa) by a postpolymerization Mitsunobu reaction. The resulting dye-polymer conjugates were fabricated as nanoparticles (∼55 nm diameter) to produce nanomaterials with a range of emission colors (420-640 nm). For increased stability, dye-PLLA-PEG conjugates were also blended with dye-free PDLA-PEG to form stereocomplex nanoparticles of smaller size (∼45 nm diameter). The decreased dye loading in the stereoblocks blue-shifted the emission, generating a broader range of fluorescence colors (410-620 nm). Tumor accumulation was confirmed in a murine model through biodistribution studies with a red emitting dimethyl amino-substituted dye-polymer analogue. The synthesis, optical properties, oxygen-sensing capabilities, and stability of these block copolymer nanoparticles are presented.


Assuntos
Compostos de Boro/química , Hidrocarbonetos Fluorados/química , Cetonas/química , Luminescência , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C
7.
Proc Natl Acad Sci U S A ; 111(15): 5508-13, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706792

RESUMO

Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration.


Assuntos
Biomimética/métodos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/crescimento & desenvolvimento , Engenharia Tecidual/métodos , Animais , Proteínas Cardiotóxicas de Elapídeos/toxicidade , Camundongos , Camundongos Nus , Microvasos/crescimento & desenvolvimento , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos
8.
Opt Lett ; 40(14): 3292-5, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26176452

RESUMO

Understanding tumor vascular dynamics through parameters such as blood flow and oxygenation can yield insight into tumor biology and therapeutic response. Hyperspectral microscopy enables optical detection of hemoglobin saturation or blood velocity by either acquiring multiple images that are spectrally distinct or by rapid acquisition at a single wavelength over time. However, the serial acquisition of spectral images over time prevents the ability to monitor rapid changes in vascular dynamics and cannot monitor concurrent changes in oxygenation and flow rate. Here, we introduce snap shot-multispectral imaging (SS-MSI) for use in imaging the microvasculature in mouse dorsal-window chambers. By spatially multiplexing spectral information into a single-image capture, simultaneous acquisition of dynamic hemoglobin saturation and blood flow over time is achieved down to the capillary level and provides an improved optical tool for monitoring rapid in vivo vascular dynamics.


Assuntos
Microvasos/metabolismo , Imagem Molecular/métodos , Animais , Hemoglobinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
9.
Transfusion ; 55(10): 2452-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26098062

RESUMO

BACKGROUND: Transfusion of red blood cells (RBCs) is a frequent health care practice. However, unfavorable consequences may occur from transfusions of stored RBCs and are associated with RBC changes during storage. Loss of S-nitrosohemoglobin (SNO-Hb) and other S-nitrosothiols (SNOs) during storage is implicated as a detriment to transfusion efficacy. It was hypothesized that restoring SNOs within banked RBCs would improve RBC functions relevant to successful transfusion outcomes, namely, increased deformability and decreased adhesivity. STUDY DESIGN AND METHODS: Stored human RBCs were incubated with nitric oxide (NO) donors PROLI/NO and DEA/NO (disodium 1-[2-(carboxylato)-pyrrolidin-1-yl]diazen-1-ium-1,2-diolate and diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate) under varying experimental conditions (e.g., aerobic/anaerobic incubation, NO donor to RBC ratio). SNO restoration was evaluated in vitro and in vivo as a means to improve RBC function after storage. RESULTS: Incubation of RBCs with the NO donors resulted in 10-fold greater levels of SNO-Hb versus untreated control or sham RBCs, with significantly higher Hb-bound NO yields from an NO dose delivered by DEA/NO. RBC incubation with DEA/NO at a stoichiometry of 1:62.5 NO:Hb significantly increased RBC deformabilty and reduced adhesion to cultured endothelial cells. RBC incubation with DEA/NO also increased S-nitrosylation of RBC cytoskeletal and membrane proteins, including the ß-spectrin chain. Renitrosylation attenuated both RBC sequestration in the lung and the mild blood oxygen saturation impairments seen with banked RBCs in a mouse model of transfusion. CONCLUSIONS: RBC renitrosylation using NO donors has promise for correcting deficient properties (e.g., adhesivity, rigidity, and SNO loss) of banked RBCs and in turn improving transfusion outcomes.


Assuntos
Preservação de Sangue , Deformação Eritrocítica/efeitos dos fármacos , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Doadores de Óxido Nítrico/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Eritrócitos/citologia , Humanos , Camundongos , Fatores de Tempo
10.
Macromol Rapid Commun ; 36(7): 694-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25753154

RESUMO

Surface modification of nanoparticles and biosensors is a dynamic, expanding area of research for targeted delivery in vivo. For more efficient delivery, surfaces are PEGylated to impart stealth properties, long circulation, and enable enhanced permeability and retention (EPR) in tumor tissues. Previously, BF2 dbm(I)PLA was proven to be a good oxygen nanosensor material for tumor hypoxia imaging in vivo, though particles were applied directly to the tumor and surrounding region. Further surface modification is needed for this dual-emissive oxygen sensitive material for effective intravenous (IV) administration and passive and active delivery to tumors. In this paper, an efficient synthesis of a new dual-emissive material BF2 dbm(I)PLA-mPEG is presented and in vitro stability studies are conducted. It is found that fabricated nanoparticles are stable for 24 weeks as a suspension, while after 25 weeks the nanoparticles swell and both dye and polymer degradation escalates. Preliminary studies show BF2 dbm(I)PLA-mPEG nanoparticle accumulation in a window chamber mammary tumor 24 h after IV injection into mice (C57Bl/6 strain) enabling tumor oxygen imaging.


Assuntos
Compostos de Boro/química , Diagnóstico por Imagem/instrumentação , Neoplasias/química , Oxigênio/análise , Polietilenoglicóis/química , Animais , Luminescência , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/diagnóstico , Neoplasias/metabolismo , Oxigênio/metabolismo
11.
Ann Surg Oncol ; 21(5): 1435-40, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23982250

RESUMO

BACKGROUND: There is increasing evidence that tumor hypoxia plays a significant role in the chemoresistance of melanoma, but to our knowledge, real-time tumor oxygenation during isolated limb infusion (ILI) has not been studied. We sought to demonstrate the feasibility of measuring real-time alterations in tissue oxygenation. METHODS: Consecutive patients with histologically confirmed in-transit melanoma were enrolled onto a prospective single-arm pilot study and administered the hypoxia marker drug EF5. All patients were treated with ILI. Optical spectroscopy readings were obtained at three locations: two discrete target lesions and one normal skin control. Measurements were taken at 11 predefined time points during ILI. RESULTS: A total of six patients were enrolled onto this pilot study. Intratumor and normal skin optical spectroscopy readings were found to have discrete inflection points throughout the duration of therapy, corresponding with established time points. Baseline hypoxia as measured by both optical spectroscopy and EF5 immunofluorescence was variable, but on the basis of optical spectra, tumors appeared to become more hypoxic compared to normal skin after tourniquet application. The optical hypoxia signature was variable between patients while hemoglobin absorption increased. CONCLUSIONS: To our knowledge, this is the first use of real-time optical spectroscopy to evaluate oxygenation and perfusion within melanoma lesions during regional chemotherapy. We report our development of this new noninvasive means of assessing tumor vascular function, which has the potential to be a powerful tool for noninvasive examination of the melanoma tumor microenvironment.


Assuntos
Etanidazol/análogos & derivados , Hidrocarbonetos Fluorados , Hipóxia/diagnóstico , Indicadores e Reagentes , Melanoma/patologia , Idoso , Antineoplásicos Alquilantes/administração & dosagem , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Hipóxia/metabolismo , Masculino , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melfalan/administração & dosagem , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Projetos Piloto , Prognóstico , Estudos Prospectivos
12.
Int J Hyperthermia ; 30(6): 385-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25164143

RESUMO

PURPOSE: There were two primary objectives of this study: (1) to determine whether treatment of a tumour site with systemically administered thermally sensitive liposomes and local hyperthermia (HT) for triggered release would have dual anti-tumour effect on the primary heated tumour as well as an unheated secondary tumour in a distant site, and (2) to determine the ability of non-invasive optical spectroscopy to predict treatment outcome. The optical end points studied included drug levels, metabolic markers flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide phosphate (NAD(P)H), and physiological markers (total haemoglobin (Hb) and Hb oxygen saturation) before and after treatment. MATERIALS AND METHODS: Mice were inoculated with SKOV3 human ovarian carcinoma in both hind legs. One tumour was selected for local hyperthermia and subsequent systemic treatment. There were four treatment groups: control, DOXIL (non-thermally sensitive liposomes containing doxorubicin), and two different thermally sensitive liposome formulations containing doxorubicin. Optical spectroscopy was performed prior to therapy, immediately after treatment, and 6, 12, and 24 h post therapy. RESULTS: Tumour growth delay was seen with DOXIL and the thermally sensitive liposomes in the tumours that were heated, similar to previous studies. Tumour growth delay was also seen in the opposing tumour in the thermally sensitive liposome-treated groups. Optical spectroscopy demonstrated correlation between growth delay, doxorubicin (DOX) levels, and changes of NAD(P)H from baseline levels. Hb and Hb saturation were not correlated with growth delay. DISCUSSION: The study demonstrated that thermally sensitive liposomes affect the primary heated tumour as well as systemic efficacy. Non-invasive optical spectroscopy methods were shown to be useful in predicting efficacy at early time points post-treatment.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/análogos & derivados , Hipertermia Induzida , Neoplasias/terapia , Animais , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Terapia Combinada , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Feminino , Flavina-Adenina Dinucleotídeo/metabolismo , Hemoglobinas/análise , Humanos , Camundongos , NADP/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Oxigênio/metabolismo , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/uso terapêutico , Análise Espectral , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos
13.
Sci Adv ; 10(14): eadj7540, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579004

RESUMO

Fewer than 20% of triple-negative breast cancer patients experience long-term responses to mainstay chemotherapy. Resistant tumor subpopulations use alternative metabolic pathways to escape therapy, survive, and eventually recur. Here, we show in vivo, longitudinal metabolic reprogramming in residual disease and recurrence of triple-negative breast cancer xenografts with varying sensitivities to the chemotherapeutic drug paclitaxel. Optical imaging coupled with metabolomics reported an increase in non-glucose-driven mitochondrial metabolism and an increase in intratumoral metabolic heterogeneity during regression and residual disease in resistant MDA-MB-231 tumors. Conversely, sensitive HCC-1806 tumors were primarily reliant on glucose uptake and minimal changes in metabolism or heterogeneity were observed over the tumors' therapeutic life cycles. Further, day-matched resistant HCC-1806 tumors revealed a higher reliance on mitochondrial metabolism and elevated metabolic heterogeneity compared to sensitive HCC-1806 tumors. Together, metabolic flexibility, increased reliance on mitochondrial metabolism, and increased metabolic heterogeneity are defining characteristics of persistent residual disease, features that will inform the appropriate type and timing of therapies.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias de Mama Triplo Negativas , Humanos , Reprogramação Metabólica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Antineoplásicos/farmacologia , Imagem Óptica , Linhagem Celular Tumoral
14.
Microcirculation ; 20(8): 724-35, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23781901

RESUMO

OBJECTIVE: Hemodynamic properties of vascular beds are of great interest in a variety of clinical and laboratory settings. However, there presently exists no automated, accurate, technically simple method for generating blood velocity maps of complex microvessel networks. METHODS: Here, we present a novel algorithm that addresses the problem of acquiring quantitative maps by applying pixel-by-pixel cross-correlation to video data. Temporal signals at every spatial coordinate are compared with signals at neighboring points, generating a series of correlation maps from which speed and direction are calculated. User-assisted definition of vessel geometries is not required, and sequential data are analyzed automatically, without user bias. RESULTS: Velocity measurements were validated against the dual-slit method and against in vitro capillary flow with known velocities. The algorithm was tested in three different biological models in order to demonstrate its versatility. CONCLUSIONS: The hemodynamic maps presented here demonstrate an accurate, quantitative method of analyzing dynamic vascular systems.


Assuntos
Algoritmos , Encéfalo/irrigação sanguínea , Pulmão/irrigação sanguínea , Neoplasias Mamárias Experimentais/irrigação sanguínea , Modelos Cardiovasculares , Animais , Velocidade do Fluxo Sanguíneo , Feminino , Camundongos , Camundongos Nus
15.
Cancers (Basel) ; 15(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190189

RESUMO

Inflammatory breast cancer (IBC), an understudied and lethal breast cancer, is often misdiagnosed due to its unique presentation of diffuse tumor cell clusters in the skin and dermal lymphatics. Here, we describe a window chamber technique in combination with a novel transgenic mouse model that has red fluorescent lymphatics (ProxTom RFP Nu/Nu) to simulate IBC clinicopathological hallmarks. Various breast cancer cells stably transfected to express green or red fluorescent reporters were transplanted into mice bearing dorsal skinfold window chambers. Intravital fluorescence microscopy and the in vivo imaging system (IVIS) were used to serially quantify local tumor growth, motility, length density of lymph and blood vessels, and degree of tumor cell lymphatic invasion over 0-140 h. This short-term, longitudinal imaging time frame in studying transient or dynamic events of diffuse and collectively migrating tumor cells in the local environment and quantitative analysis of the tumor area, motility, and vessel characteristics can be expanded to investigate other cancer cell types exhibiting lymphovascular invasion, a key step in metastatic dissemination. It was found that these models were able to effectively track tumor cluster migration and dissemination, which is a hallmark of IBC clinically, and was recapitulated in these mouse models.

16.
Curr Oncol ; 30(3): 2751-2760, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36975421

RESUMO

Diffuse reflectance spectroscopy (DRS) is a powerful tool for quantifying optical and physiological tissue properties such as hemoglobin oxygen saturation and vascularity. DRS is increasingly used clinically for distinguishing cancerous lesions from normal tissue. However, its widespread clinical acceptance is still limited due to uncontrolled probe-tissue interface pressure that influences reproducibility and introduces operator-dependent results. In this clinical study, we assessed and validated a pressure-sensing and automatic self-calibration DRS in patients with suspected head and neck squamous cell carcinoma (HNSCC). The clinical study enrolled nineteen patients undergoing HNSCC surgical biopsy procedures. Patients consented to evaluation of this improved DRS system during surgery. For each patient, we obtained 10 repeated measurements on one tumor site and one distant normal location. Using a Monte Carlo-based model, we extracted the hemoglobin saturation data along with total hemoglobin content and scattering properties. A total of twelve cancer tissue samples from HNSCC patients and fourteen normal tissues were analyzed. A linear mixed effects model tested for significance between repeated measurements and compared tumor versus normal tissue. These results demonstrate that cancerous tissues have a significantly lower hemoglobin saturation compared to normal controls (p < 0.001), which may be reflective of tumor hypoxia. In addition, there were minimal changes over time upon probe placement and repeated measurement, indicating that the pressure-induced changes were minimal and repeated measurements did not differ significantly from the initial value. This study demonstrates the feasibility of conducting optical spectroscopy measurements on intact lesions prior to removal during HNSCC procedures, and established that this probe provides diagnostically-relevant physiologic information that may impact further treatment.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Reprodutibilidade dos Testes , Análise Espectral/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Hemoglobinas
17.
Mol Imaging Biol ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37721686

RESUMO

PURPOSE: Tumor hypoxia contributes to aggressive phenotypes and diminished therapeutic responses to radiation therapy (RT) with hypoxic tissue being 3-fold less radiosensitive than normoxic tissue. A major challenge in implementing hypoxic radiosensitizers is the lack of a high-resolution imaging modality that directly quantifies tissue-oxygen. The electron paramagnetic resonance oxygen-imager (EPROI) was used to quantify tumor oxygenation in two murine tumor models: E0771 syngeneic transplant breast cancers and primary p53/MCA soft tissue sarcomas, with the latter autochthonous model better recapitulating the tumor microenvironment in human malignancies. We hypothesized that tumor hypoxia differs between these models. We also aimed to quantify the absolute change in tumor hypoxia induced by the mitochondrial inhibitor papaverine (PPV) and its effect on RT response. PROCEDURES: Tumor oxygenation was characterized in E0771 and primary p53/MCA sarcomas via EPROI, with the former model also being quantified indirectly via diffuse reflectance spectroscopy (DRS). After confirming PPV's effect on hypoxic fraction (via EPROI), we compared the effect of 0 versus 2 mg/kg PPV prior to 20 Gy on tumor growth delay and survival. RESULTS: Hypoxic sarcomas were more radioresistant than normoxic sarcomas (p=0.0057, 2-way ANOVA), and high baseline hypoxic fraction was a significant (p=0.0063, Cox Regression Model) hazard in survivability regardless of treatment. Pre-treatment with PPV before RT did not radiosensitize tumors in the sarcoma or E0771 model. In the sarcoma model, EPROI successfully identified baseline hypoxic tumors. DRS quantification of total hemoglobin, saturated hemoglobin, changes in mitochondrial potential and glucose uptake showed no significant difference in E0771 tumors pre- and post-PPV. CONCLUSION: EPROI provides 3D high-resolution pO2 quantification; EPR is better suited than DRS to characterize tumor hypoxia. PPV did not radiosensitize E0771 tumors nor p53/MCA sarcomas, which may be related to the complex pattern of vasculature in each tumor. Additionally, understanding model-dependent tumor hypoxia will provide a much-needed foundation for future therapeutic studies with hypoxic radiosensitizers.

18.
Biomed Opt Express ; 13(7): 3869-3881, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991919

RESUMO

Intracellular oxygenation is an important parameter for numerous biological studies. While there are a variety of methods available for acquiring in vivo measurements of oxygenation in animal models, most are dependent on indirect oxygen measurements, restraints, or anesthetization. A portable microscope system using a Raspberry Pi computer and Pi Camera was developed for attaching to murine dorsal window chambers. Dual-emissive boron nanoparticles were used as an oxygen-sensing probe while mice were imaged in awake and anesthetized states. The portable microscope system avoids altered in vivo measurements due to anesthesia or restraints while enabling increased continual acquisition durations.

19.
Nanophotonics ; 10(12): 3295-3302, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36405500

RESUMO

Cancer is the second leading cause of death and there is an urgent need to improve cancer management. We have developed an innovative cancer therapy named Synergistic Immuno Photothermal Nanotherapy (SYMPHONY) by combining gold nanostars (GNS)-mediated photothermal ablation with checkpoint inhibitor immunotherapy. Our previous studies have demonstrated that SYMPHONY photoimmunotherapy not only treats the primary tumor but also dramatically amplifies anticancer immune responses in synergy with checkpoint blockade immunotherapy to treat remote and unresectable cancer metastasis. The SYMPHONY treatment also induces a 'cancer vaccine' effect leading to immunologic memory and prevents cancer recurrence in murine animal models. This manuscript provides an overview of our research activities on the SYMPHONY therapy with plasmonic GNS for cancer treatment.

20.
Nat Mater ; 8(9): 747-51, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19668206

RESUMO

Luminescent materials are widely used for imaging and sensing owing to their high sensitivity, rapid response and facile detection by many optical technologies. Typically materials must be chemically tailored to achieve intense, photostable fluorescence, oxygen-sensitive phosphorescence or dual emission for ratiometric sensing, often by blending two dyes in a matrix. Dual-emissive materials combining all of these features in one easily tunable molecular platform are desirable, but when fluorescence and phosphorescence originate from the same dye, it can be challenging to vary relative fluorescence/phosphorescence intensities for practical sensing applications. Heavy-atom substitution alone increases phosphorescence by a given, not variable amount. Here, we report a strategy for modulating fluorescence/phosphorescence for a single-component, dual-emissive, iodide-substituted difluoroboron dibenzoylmethane-poly(lactic acid) (BF(2)dbm(I)PLA) solid-state sensor material. This is accomplished through systematic variation of the PLA chain length in controlled solvent-free lactide polymerization combined with heavy-atom substitution. We demonstrate the versatility of this approach by showing that films made from low-molecular-weight BF(2)dbm(I)PLA with weak fluorescence and strong phosphorescence are promising as 'turn on' sensors for aerodynamics applications, and that nanoparticles fabricated from a higher-molecular-weight polymer with balanced fluorescence and phosphorescence intensities serve as ratiometric tumour hypoxia imaging agents.


Assuntos
Hipóxia/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Hipóxia/patologia , Ácido Láctico/química , Ácido Láctico/metabolismo , Camundongos , Nanopartículas/análise , Nanopartículas/química , Poliésteres , Polímeros/química , Polímeros/metabolismo , Espectrometria de Fluorescência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA