Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell ; 187(2): 219-224, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242078

RESUMO

50 years ago, cell biology was a nascent field. Today, it is a vast discipline whose principles and tools are also applied to other disciplines; vice versa, cell biologists are inspired by other fields. So, the question begs: what is cell biology? The answers are as diverse as the people who define it.

2.
Cell ; 185(5): 777-793.e20, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35196500

RESUMO

In development, lineage segregation is coordinated in time and space. An important example is the mammalian inner cell mass, in which the primitive endoderm (PrE, founder of the yolk sac) physically segregates from the epiblast (EPI, founder of the fetus). While the molecular requirements have been well studied, the physical mechanisms determining spatial segregation between EPI and PrE remain elusive. Here, we investigate the mechanical basis of EPI and PrE sorting. We find that rather than the differences in static cell surface mechanical parameters as in classical sorting models, it is the differences in surface fluctuations that robustly ensure physical lineage sorting. These differential surface fluctuations systematically correlate with differential cellular fluidity, which we propose together constitute a non-equilibrium sorting mechanism for EPI and PrE lineages. By combining experiments and modeling, we identify cell surface dynamics as a key factor orchestrating the correct spatial segregation of the founder embryonic lineages.


Assuntos
Blastocisto , Embrião de Mamíferos , Endoderma , Animais , Blastocisto/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Membrana Celular/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Endoderma/metabolismo , Mamíferos , Camundongos , Transporte Proteico
3.
Nat Immunol ; 23(8): 1169-1182, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35882934

RESUMO

Emergent physical properties of tissues are not readily understood by reductionist studies of their constituent cells. Here, we show molecular signals controlling cellular, physical, and structural properties and collectively determine tissue mechanics of lymph nodes, an immunologically relevant adult tissue. Lymph nodes paradoxically maintain robust tissue architecture in homeostasis yet are continually poised for extensive expansion upon immune challenge. We find that in murine models of immune challenge, cytoskeletal mechanics of a cellular meshwork of fibroblasts determine tissue tension independently of extracellular matrix scaffolds. We determine that C-type lectin-like receptor 2 (CLEC-2)-podoplanin signaling regulates the cell surface mechanics of fibroblasts, providing a mechanically sensitive pathway to regulate lymph node remodeling. Perturbation of fibroblast mechanics through genetic deletion of podoplanin attenuates T cell activation. We find that increased tissue tension through the fibroblastic stromal meshwork is required to trigger the initiation of fibroblast proliferation and restore homeostatic cellular ratios and tissue structure through lymph node expansion.


Assuntos
Fibroblastos , Linfonodos , Animais , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Homeostase , Lectinas Tipo C/metabolismo , Camundongos
4.
Nat Rev Mol Cell Biol ; 23(7): 465-480, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35365816

RESUMO

Mechanical signalling affects multiple biological processes during development and in adult organisms, including cell fate transitions, cell migration, morphogenesis and immune responses. Here, we review recent insights into the mechanisms and functions of two main routes of mechanical signalling: outside-in mechanical signalling, such as mechanosensing of substrate properties or shear stresses; and mechanical signalling regulated by the physical properties of the cell surface itself. We discuss examples of how these two classes of mechanical signalling regulate stem cell function, as well as developmental processes in vivo. We also discuss how cell surface mechanics affects intracellular signalling and, in turn, how intracellular signalling controls cell surface mechanics, generating feedback into the regulation of mechanosensing. The cooperation between mechanosensing, intracellular signalling and cell surface mechanics has a profound impact on biological processes. We discuss here our understanding of how these three elements interact to regulate stem cell fate and development.


Assuntos
Fenômenos Biológicos , Mecanotransdução Celular , Diferenciação Celular , Mecanotransdução Celular/fisiologia , Morfogênese , Transdução de Sinais
6.
Annu Rev Cell Dev Biol ; 32: 469-490, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27501447

RESUMO

Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.


Assuntos
Movimento Celular , Adesões Focais/metabolismo , Animais , Fenômenos Biomecânicos , Humanos , Modelos Biológicos
7.
Annu Rev Cell Dev Biol ; 28: 29-58, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22804577

RESUMO

Cytokinesis, the final step in cell division, partitions the contents of a single cell into two. In animal cells, cytokinesis occurs through cortical remodeling orchestrated by the anaphase spindle. Cytokinesis relies on a tight interplay between signaling and cellular mechanics and has attracted the attention of both biologists and physicists for more than a century. In this review, we provide an overview of four topics in animal cell cytokinesis: (a) signaling between the anaphase spindle and cortex, (b) the mechanics of cortical remodeling, (c) abscission, and (d) regulation of cytokinesis by the cell cycle machinery. We report on recent progress in these areas and highlight some of the outstanding questions that these findings bring into focus.


Assuntos
Citocinese , Anáfase , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Humanos , Modelos Biológicos , Transdução de Sinais , Fuso Acromático/metabolismo
8.
J Cell Sci ; 135(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35892282

RESUMO

Many animal cell shape changes are driven by gradients in the contractile tension of the actomyosin cortex, a thin cytoskeletal network supporting the plasma membrane. Elucidating cortical tension control is thus essential for understanding cell morphogenesis. Increasing evidence shows that alongside myosin activity, actin network organisation and composition are key to cortex tension regulation. However, owing to a poor understanding of how cortex composition changes when tension changes, which cortical components are important remains unclear. In this article, we compared cortices from cells with low and high cortex tensions. We purified cortex-enriched fractions from cells in interphase and mitosis, as mitosis is characterised by high cortical tension. Mass spectrometry analysis identified 922 proteins consistently represented in both interphase and mitotic cortices. Focusing on actin-related proteins narrowed down the list to 238 candidate regulators of the mitotic cortical tension increase. Among these candidates, we found that there is a role for septins in mitotic cell rounding control. Overall, our study provides a comprehensive dataset of candidate cortex regulators, paving the way for systematic investigations of the regulation of cell surface mechanics. This article has an associated First Person interview with the first author of the paper.


Assuntos
Actinas , Proteômica , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Humanos , Interfase , Mitose
9.
Development ; 148(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343262

RESUMO

Embryonic tissues are shaped by the dynamic behaviours of their constituent cells. To understand such cell behaviours and how they evolved, new approaches are needed to map out morphogenesis across different organisms. Here, we apply a quantitative approach to learn how the notochord forms during the development of amphioxus: a basally branching chordate. Using a single-cell morphometrics pipeline, we quantify the geometries of thousands of amphioxus notochord cells, and project them into a common mathematical space, termed morphospace. In morphospace, notochord cells disperse into branching trajectories of cell shape change, revealing a dynamic interplay between cell shape change and growth that collectively contributes to tissue elongation. By spatially mapping these trajectories, we identify conspicuous regional variation, both in developmental timing and trajectory topology. Finally, we show experimentally that, unlike ascidians but like vertebrates, posterior cell division is required in amphioxus to generate full notochord length, thereby suggesting this might be an ancestral chordate trait that is secondarily lost in ascidians. Altogether, our novel approach reveals that an unexpectedly complex scheme of notochord morphogenesis might have been present in the first chordates. This article has an associated 'The people behind the papers' interview.


Assuntos
Desenvolvimento Embrionário/fisiologia , Anfioxos/embriologia , Notocorda/embriologia , Organogênese/fisiologia , Análise de Célula Única/métodos , Animais , Divisão Celular/fisiologia , Forma Celular/fisiologia , Feminino , Masculino , Modelos Teóricos , Urocordados/embriologia
10.
J Cell Sci ; 134(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34323278

RESUMO

Proper control of division orientation and symmetry, largely determined by spindle positioning, is essential to development and homeostasis. Spindle positioning has been extensively studied in cells dividing in two-dimensional (2D) environments and in epithelial tissues, where proteins such as NuMA (also known as NUMA1) orient division along the interphase long axis of the cell. However, little is known about how cells control spindle positioning in three-dimensional (3D) environments, such as early mammalian embryos and a variety of adult tissues. Here, we use mouse embryonic stem cells (ESCs), which grow in 3D colonies, as a model to investigate division in 3D. We observe that, at the periphery of 3D colonies, ESCs display high spindle mobility and divide asymmetrically. Our data suggest that enhanced spindle movements are due to unequal distribution of the cell-cell junction protein E-cadherin between future daughter cells. Interestingly, when cells progress towards differentiation, division becomes more symmetric, with more elongated shapes in metaphase and enhanced cortical NuMA recruitment in anaphase. Altogether, this study suggests that in 3D contexts, the geometry of the cell and its contacts with neighbors control division orientation and symmetry. This article has an associated First Person interview with the first author of the paper.


Assuntos
Anáfase , Fuso Acromático , Animais , Junções Intercelulares , Metáfase , Camundongos , Mitose , Células-Tronco
11.
J Cell Sci ; 131(14)2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026344

RESUMO

Precisely controlled cell deformations are key to cell migration, division and tissue morphogenesis, and have been implicated in cell differentiation during development, as well as cancer progression. In animal cells, shape changes are primarily driven by the cellular cortex, a thin actomyosin network that lies directly underneath the plasma membrane. Myosin-generated forces create tension in the cortical network, and gradients in tension lead to cellular deformations. Recent studies have provided important insight into the molecular control of cortical tension by progressively unveiling cortex composition and organization. In this Cell Science at a Glance article and the accompanying poster, we review our current understanding of cortex composition and architecture. We then discuss how the microscopic properties of the cortex control cortical tension. While many open questions remain, it is now clear that cortical tension can be modulated through both cortex composition and organization, providing multiple levels of regulation for this key cellular property during cell and tissue morphogenesis.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/genética , Actinas/genética , Animais , Forma Celular , Humanos , Miosinas/genética , Miosinas/metabolismo
12.
Nat Rev Mol Cell Biol ; 9(9): 730-6, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18628785

RESUMO

Blebs are spherical membrane protrusions that are produced by contractions of the actomyosin cortex. Blebs are often considered to be a hallmark of apoptosis; however, blebs are also frequently observed during cytokinesis and during migration in three-dimensional cultures and in vivo. For tumour cells and a number of embryonic cells, blebbing migration seems to be a common alternative to the more extensively studied lamellipodium-based motility. We argue that blebs should be promoted to a more prominent place in the world of cellular protrusions.


Assuntos
Movimento Celular , Pseudópodes/metabolismo , Animais , Proteínas/metabolismo
13.
Nature ; 476(7361): 462-6, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21822289

RESUMO

Cytokinesis, the physical separation of daughter cells at the end of mitosis, requires precise regulation of the mechanical properties of the cell periphery. Although studies of cytokinetic mechanics mostly focus on the equatorial constriction ring, a contractile actomyosin cortex is also present at the poles of dividing cells. Whether polar forces influence cytokinetic cell shape and furrow positioning remains an open question. Here we demonstrate that the polar cortex makes cytokinesis inherently unstable. We show that limited asymmetric polar contractions occur during cytokinesis, and that perturbing the polar cortex leads to cell shape oscillations, resulting in furrow displacement and aneuploidy. A theoretical model based on a competition between cortex turnover and contraction dynamics accurately accounts for the oscillations. We further propose that membrane blebs, which commonly form at the poles of dividing cells and whose role in cytokinesis has long been enigmatic, stabilize cell shape by acting as valves releasing cortical contractility. Our findings reveal an inherent instability in the shape of the dividing cell and unveil a novel, spindle-independent mechanism ensuring the stability of cleavage furrow positioning.


Assuntos
Actomiosina/metabolismo , Forma Celular/fisiologia , Citocinese/fisiologia , Amidas/farmacologia , Aneuploidia , Linhagem Celular , Forma Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Citocinese/efeitos dos fármacos , Células HeLa , Humanos , Modelos Biológicos , Piridinas/farmacologia
14.
BMC Biol ; 14: 74, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27589901

RESUMO

BACKGROUND: High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood. RESULTS: Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision. CONCLUSIONS: Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times.


Assuntos
Actinas/metabolismo , Movimento Celular , Pseudópodes/metabolismo , Peixe-Zebra/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Endoderma/citologia , Mesoderma/citologia , Morfolinos/farmacologia , Pseudópodes/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
15.
BMC Biol ; 13: 47, 2015 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-26141078

RESUMO

Mechanotransduction - how cells sense physical forces and translate them into biochemical and biological responses - is a vibrant and rapidly-progressing field, and is important for a broad range of biological phenomena. This forum explores the role of mechanotransduction in a variety of cellular activities and highlights intriguing questions that deserve further attention.


Assuntos
Mecanotransdução Celular , Actomiosina/metabolismo , Animais , Fenômenos Biomecânicos , Adesão Celular , Adesões Focais/metabolismo , Humanos , Cinética , Locomoção , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fibras de Estresse/metabolismo
16.
Proc Natl Acad Sci U S A ; 109(36): 14434-9, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22786929

RESUMO

Protrusion formation is an essential step during cell migration. Cells migrating in three-dimensional environments and in vivo can form a wide variety of protrusion types, including actin polymerization-driven lamellipodia, and contractility-driven blebs. The ability to switch between different protrusions has been proposed to facilitate motility in complex environments and to promote cancer dissemination. However, plasticity in protrusion formation has so far mostly been investigated in the context of transitions between amoeboid and mesenchymal migration modes, which involve substantial changes in overall cell morphology. As a result, the minimal requirements of transitions between blebs and lamellipodia, as well as the time scales on which they occur, remain unknown. To address these questions, we investigated protrusion switching during cell migration at the single cell level. Using cells that can be induced to form either blebs or lamellipodia, we systematically assessed the mechanical requirements, as well as the dynamics, of switching between protrusion types. We demonstrate that shifting the balance between actin protrusivity and actomyosin contractility leads to immediate transitions between blebs and lamellipodia in migrating cells. Switching occurred without changes in global cell shape, polarity, or cell adhesion. Furthermore, rapid transitions between blebs and lamellipodia could also be triggered upon changes in substrate adhesion during migration on micropatterned surfaces. Together, our data reveal that the type of protrusion formed by migrating cells can be dynamically controlled independently of overall cell morphology, suggesting that protrusion formation is an autonomous module in the regulatory network that controls the plasticity of cell migration.


Assuntos
Movimento Celular/fisiologia , Extensões da Superfície Celular/fisiologia , Modelos Biológicos , Pseudópodes/fisiologia , Proteína 3 Relacionada a Actina/genética , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Terapia a Laser , Microscopia Confocal , Microscopia de Interferência , Ratos
17.
Biophys J ; 105(3): 570-80, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23931305

RESUMO

Animal cell shape is controlled primarily by the actomyosin cortex, a thin cytoskeletal network that lies directly beneath the plasma membrane. The cortex regulates cell morphology by controlling cellular mechanical properties, which are determined by network structure and geometry. In particular, cortex thickness is expected to influence cell mechanics. However, cortex thickness is near the resolution limit of the light microscope, making studies relating cortex thickness and cell shape challenging. To overcome this, we developed an assay to measure cortex thickness in live cells, combining confocal imaging and subresolution image analysis. We labeled the actin cortex and plasma membrane with chromatically different fluorophores and measured the distance between the resulting intensity peaks. Using a theoretical description of cortex geometry and microscopic imaging, we extracted an average cortex thickness of ∼190 nm in mitotic HeLa cells and tested the validity of our assay using cell images generated in silico. We found that thickness increased after experimental treatments preventing F-actin disassembly. Finally, we monitored physiological changes in cortex thickness in real-time during actin cortex regrowth in cellular blebs. Our investigation paves the way to understanding how molecular processes modulate cortex structure, which in turn drives cell morphogenesis.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência
18.
PLoS Biol ; 8(11): e1000544, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21151339

RESUMO

Cell shape and motility are primarily controlled by cellular mechanics. The attachment of the plasma membrane to the underlying actomyosin cortex has been proposed to be important for cellular processes involving membrane deformation. However, little is known about the actual function of membrane-to-cortex attachment (MCA) in cell protrusion formation and migration, in particular in the context of the developing embryo. Here, we use a multidisciplinary approach to study MCA in zebrafish mesoderm and endoderm (mesendoderm) germ layer progenitor cells, which migrate using a combination of different protrusion types, namely, lamellipodia, filopodia, and blebs, during zebrafish gastrulation. By interfering with the activity of molecules linking the cortex to the membrane and measuring resulting changes in MCA by atomic force microscopy, we show that reducing MCA in mesendoderm progenitors increases the proportion of cellular blebs and reduces the directionality of cell migration. We propose that MCA is a key parameter controlling the relative proportions of different cell protrusion types in mesendoderm progenitors, and thus is key in controlling directed migration during gastrulation.


Assuntos
Membrana Celular/metabolismo , Movimento Celular/fisiologia , Citoesqueleto/metabolismo , Animais , Gastrulação/fisiologia , Mesoderma/citologia , Microscopia de Força Atômica , Microscopia Confocal , Pseudópodes/fisiologia , Células-Tronco/citologia , Peixe-Zebra/embriologia
19.
Proc Natl Acad Sci U S A ; 106(44): 18581-6, 2009 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-19846787

RESUMO

Blebs are spherical membrane protrusions often observed during cell migration, cell spreading, cytokinesis, and apoptosis, both in cultured cells and in vivo. Bleb expansion is thought to be driven by the contractile actomyosin cortex, which generates hydrostatic pressure in the cytoplasm and can thus drive herniations of the plasma membrane. However, the role of cortical tension in bleb formation has not been directly tested, and despite the importance of blebbing, little is known about the mechanisms of bleb growth. In order to explore the link between cortical tension and bleb expansion, we induced bleb formation on cells with different tensions. Blebs were nucleated in a controlled manner by laser ablation of the cortex, mimicking endogenous bleb nucleation. Cortical tension was modified by treatments affecting the level of myosin activity or proteins regulating actin turnover. We show that there is a critical tension below which blebs cannot expand. Above this threshold, the maximal size of a bleb strongly depends on tension, and this dependence can be fitted with a model of the cortex as an active elastic material. Together, our observations and model allow us to relate bleb shape parameters to the underlying cellular mechanics and provide insights as to how bleb formation can be biochemically regulated during cell motility.


Assuntos
Extensões da Superfície Celular/fisiologia , Citoesqueleto/fisiologia , Actinas/metabolismo , Animais , Linhagem Celular , Elasticidade , Lasers , Camundongos , Modelos Biológicos , Miosinas/metabolismo , Pressão
20.
Trends Cell Biol ; 16(1): 5-10, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16325405

RESUMO

Tight regulation of the contractility of the actomyosin cortex is essential for proper cell locomotion and division. Enhanced contractility leads, for example, to aberrations in the positioning of the mitotic spindle or to anomalous migration modes that allow tumor cells to escape anti-dissemination treatments. Spherical membrane protrusions called blebs occasionally appear during cell migration, cell division or apoptosis. We have shown that the cortex ruptures at sites where actomyosin cortical contractility is increased, leading to the formation of blebs. Here, we propose that bleb formation, which releases cortical tension, can be used as a reporter of cortical contractility. We go on to analyze the implications of spontaneous cortical contractile behaviors on cell locomotion and division and we particularly emphasize that variations in actomyosin contractility can account for a variety of migration modes.


Assuntos
Actomiosina/análise , Actomiosina/fisiologia , Divisão Celular/fisiologia , Movimento Celular/fisiologia , Citoplasma/química , Actomiosina/ultraestrutura , Animais , Membrana Celular/química , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Polaridade Celular , Proteínas Contráteis/análise , Proteínas Contráteis/fisiologia , Proteínas Contráteis/ultraestrutura , Citocinese , Citoplasma/ultraestrutura , Proteínas do Citoesqueleto/análise , Proteínas do Citoesqueleto/fisiologia , Proteínas do Citoesqueleto/ultraestrutura , Citoesqueleto/química , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , Géis , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA