Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 463(7281): 662-5, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20062045

RESUMO

The canalization concept describes the resistance of a developmental process to phenotypic variation, regardless of genetic and environmental perturbations, owing to the existence of buffering mechanisms. Severe perturbations, which overcome such buffering mechanisms, produce altered phenotypes that can be heritable and can themselves be canalized by a genetic assimilation process. An important implication of this concept is that the buffering mechanism could be genetically controlled. Recent studies on Hsp90, a protein involved in several cellular processes and development pathways, indicate that it is a possible molecular mechanism for canalization and genetic assimilation. In both flies and plants, mutations in the Hsp90-encoding gene induce a wide range of phenotypic abnormalities, which have been interpreted as an increased sensitivity of different developmental pathways to hidden genetic variability. Thus, Hsp90 chaperone machinery may be an evolutionarily conserved buffering mechanism of phenotypic variance, which provides the genetic material for natural selection. Here we offer an additional, perhaps alternative, explanation for proposals of a concrete mechanism underlying canalization. We show that, in Drosophila, functional alterations of Hsp90 affect the Piwi-interacting RNA (piRNA; a class of germ-line-specific small RNAs) silencing mechanism leading to transposon activation and the induction of morphological mutants. This indicates that Hsp90 mutations can generate new variation by transposon-mediated 'canonical' mutagenesis.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Variação Genética/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/metabolismo , Mutagênese/genética , Sequência de Aminoácidos , Animais , Benzoquinonas/farmacologia , Southern Blotting , Proteínas de Drosophila/genética , Feminino , Inativação Gênica/efeitos dos fármacos , Genótipo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico/genética , Homozigoto , Lactamas Macrocíclicas/farmacologia , Masculino , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Fenótipo , Proteínas Quinases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcrição Gênica/efeitos dos fármacos
2.
J Biomed Biotechnol ; 2009: 860761, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20145706

RESUMO

There are many well-studied examples of human phenotypes resulting from nonsense or frameshift mutations that are modulated by Nonsense-Mediated mRNA Decay (NMD), a process that typically degrades transcripts containing premature termination codons (PTCs) in order to prevent translation of unnecessary or aberrant transcripts. Different types of germline mutations in the VHL gene cause the von Hippel-Lindau disease, a dominantly inherited familial cancer syndrome with a marked phenotypic variability and age-dependent penetrance. By generating the Drosophila UAS:Upf1(D45B) line we showed the possible involvement of NMD mechanism in the modulation of the c.172delG frameshift mutation located in the exon 1 of Vhl gene. Further, by Quantitative Real-time PCR (QPCR) we demonstrated that the corresponding c.163delG human mutation is targeted by NMD in human HEK 293 cells. The UAS:Upf1(D45B) line represents a useful system to identify novel substrates of NMD pathway in Drosophila melanogaster. Finally, we suggest the possible role of NMD on the regulation of VHL mutations.


Assuntos
Drosophila melanogaster/genética , Mutação da Fase de Leitura , Estabilidade de RNA/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Ovário/química , Ovário/metabolismo , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testículo/química , Testículo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
3.
Genetics ; 161(4): 1551-9, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12196400

RESUMO

Drosophila melanogaster males deficient for the crystal (cry) locus of the Y chromosome that carry between 15 and 60 copies of the X-linked Stellate (Ste) gene are semisterile, have elevated levels of nondisjunction, produce distorted sperm genotype ratios (meiotic drive), and evince hyperactive transcription of Ste in the testes. Ste seems to be the active element in this system, and it has been proposed that the ancestral Ste gene was "selfish" and increased in frequency because it caused meiotic drive. This hypothetical evolutionary history is based on the idea that Ste overexpression, and not the lack of cry, causes the meiotic drive of cry(-) males. To test whether this is true, we have constructed a Ste-deleted X chromosome and examined the phenotype of Ste(-)/cry(-) males. If hyperactivity of Ste were necessary for the transmission defects seen in cry(-) males, cry(-) males completely deficient for Ste would be normal. Although it is impossible to construct a completely Ste(-) genotype, we find that Ste(-)/cry(-) males have exactly the same phenotype as Ste(+)/cry(-) males. The deletion of all X chromosome Ste copies not only does not eliminate meiotic drive and nondisjunction, but it also does not even reduce them below the levels produced when the X carries 15 copies of Ste.


Assuntos
Drosophila melanogaster/genética , Proteínas de Insetos/genética , Meiose/genética , Proteínas Quinases , Análise de Variância , Animais , Proteínas de Drosophila , Drosophila melanogaster/fisiologia , Feminino , Marcadores Genéticos , Proteínas de Insetos/fisiologia , Funções Verossimilhança , Masculino , Meiose/fisiologia , Cromossomo X , Cromossomo Y
4.
PLoS One ; 10(3): e0120859, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826374

RESUMO

Pol32 is an accessory subunit of the replicative DNA Polymerase δ and of the translesion Polymerase ζ. Pol32 is involved in DNA replication, recombination and repair. Pol32's participation in high- and low-fidelity processes, together with the phenotypes arising from its disruption, imply multiple roles for this subunit within eukaryotic cells, not all of which have been fully elucidated. Using pol32 null mutants and two partial loss-of-function alleles pol32rd1 and pol32rds in Drosophila melanogaster, we show that Pol32 plays an essential role in promoting genome stability. Pol32 is essential to ensure DNA replication in early embryogenesis and it participates in the repair of mitotic chromosome breakage. In addition we found that pol32 mutants suppress position effect variegation, suggesting a role for Pol32 in chromatin architecture.


Assuntos
Instabilidade Cromossômica , DNA Polimerase Dirigida por DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Alelos , Animais , Drosophila melanogaster/embriologia , Feminino
5.
G3 (Bethesda) ; 4(9): 1709-16, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25053704

RESUMO

The dosage effect of Y-chromosome heterochromatin on suppression of position effect variegation (PEV) has long been well-known in Drosophila. The phenotypic effects of increasing the overall dosage of Y heterochromatin have also been demonstrated; hyperploidy of the Y chromosome produces male sterility and many somatic defects including variegation and abnormal legs and wings. This work addresses whether the suppression of position effect variegation (PEV) is a general feature of the heterochromatin (independent of the chromosome of origin) and whether a hyperdosage of heterochromatin can affect viability. The results show that the suppression of PEV is a general feature of any type of constitutive heterochromatin and that the intensity of suppression depends on its amount instead of some mappable factor on it. We also describe a clear dosage effect of Y heterochromatin on the viability of otherwise wild-type embryos and the modification of that effect by a specific gene mutation. Together, our results indicate that the correct balance between heterochromatin and euchromatin is essential for the normal genome expression and that this balance is genetically controlled.


Assuntos
Drosophila/genética , Heterocromatina/genética , Animais , Eucromatina/genética , Feminino , Masculino , Cromossomo X , Cromossomo Y
6.
Dev Cell ; 18(3): 486-95, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20230755

RESUMO

Centrosome abnormalities lead to genomic instability and are a common feature of many cancer cells. Here we show that mutations in morgana/chp-1 result in centrosome amplification and lethality in both Drosophila and mouse, and that the fly centrosome phenotype is fully rescued by the human ortholog of morgana. In mouse cells, morgana forms a complex with Hsp90 and ROCK I and II, and directly binds ROCK II. Morgana downregulation promotes the interaction between ROCK II and nucleophosmin (NPM), leading to an increased ROCK II kinase activity, which results in centrosome amplification. Morgana(+/-) primary cells and mice display an increased susceptibility to neoplastic transformation. In addition, tumor tissue array histochemical analysis revealed that morgana is underexpressed in a large fraction of breast and lung human cancers. Thus, morgana/chp-1 appears to prevent both centrosome amplification and tumorigenesis.


Assuntos
Proteínas de Transporte/metabolismo , Centrossomo/metabolismo , Centrossomo/patologia , Quinases Associadas a rho/antagonistas & inibidores , Animais , Neoplasias da Mama/genética , Proteínas de Transporte/genética , Transformação Celular Neoplásica , Regulação para Baixo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Inibidores Enzimáticos/metabolismo , Feminino , Proteínas Fúngicas/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mitose/genética , Mitose/fisiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Neoplasias Experimentais/etiologia , Proteínas Nucleares/metabolismo , Nucleofosmina , Gravidez
7.
Chromosoma ; 117(1): 25-39, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17823810

RESUMO

In Drosophila, the Polycomb group and trithorax group proteins play a critical role in controlling the expression states of homeotic gene complexes during development. The common view is that these two classes of proteins bind to the homeotic complexes and regulate transcription at the level of chromatin. In the present work, we tested the involvement of both groups in mitotic heterochromatin formation in Drosophila. Using specific antibodies, we show that some of the tested Pc-G proteins are present in heterochromatin, while all the tested trx-G proteins localize to specific regions of heterochromatin in both mitotic chromosomes and interphase nuclei. We also observed that mutations in trx-G genes are recessive enhancers of position-effect variegation and are able to repress the transcription of heterochromatic genes. These results strongly suggest that trx-G proteins, along with some Pc-G proteins, play an active role in heterochromatin formation in Drosophila.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Heterocromatina/genética , Mutação/genética , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Encéfalo/fisiologia , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Cromossomos/genética , Primers do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Imunofluorescência , Genes Homeobox/fisiologia , Genes Recessivos , Heterocromatina/metabolismo , Heterocromatina/ultraestrutura , Histonas/metabolismo , Interfase , Mitose , Complexo Repressor Polycomb 1 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Transcrição Gênica
8.
Genetica ; 117(2-3): 247-57, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12723704

RESUMO

The crystal-Stellate system is one of the most known example of interaction between heterochromatin and euchromatin: a heterochromatic locus on the Y chromosome (crystal) 'represses' a euchromatic locus (Stellate) on the X chromosome in Drosophila melanogaster. The molecular mechanism regulating this interaction is not completely understood. It is becoming clear that an RNA interference (RNAi) mechanism could be responsible for the silencing carried out by crystal on the Stellate sequences. Here, a detailed structural analysis of all the sequences involved in the system is reported, demonstrating a their 'puzzling' structure. In addition three autosomal mutations: sting, scratch and sirio are described that interfere with the system. All of them are male sterile mutations and exhibit crystals made by the STELLATE protein in their primary spermatocytes. They are requested during oogenesis and early in embryogenesis as well. Hypothesis on the involvement of these genes in activating the Stellate sequences are discussed.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Proteínas Repressoras/genética , Sequência de Aminoácidos , Animais , Northern Blotting , Mapeamento Cromossômico , Eucromatina , Evolução Molecular , Heterocromatina , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA