Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Drug Metab Dispos ; 52(3): 252-265, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38135504

RESUMO

Methadone is cleared predominately by hepatic cytochrome P450 (CYP) 2B6-catalyzed metabolism to inactive metabolites. CYP2B6 also catalyzes the metabolism of several other drugs. Methadone and CYP2B6 are susceptible to pharmacokinetic drug-drug interactions. Use of natural products such as herbals and other botanicals is substantial and growing, and concomitant use of prescription medicines and non-prescription herbals is common and may result in interactions, often precipitated by CYP inhibition. Little is known about herbal product effects on CYP2B6 activity, and CYP2B6-catalyzed methadone metabolism. We screened a family of natural product compounds used in traditional medicines, herbal teas, and synthetic analogs of compounds found in plants, including kavalactones, flavokavains, chalcones and gambogic acid, for inhibition of expressed CYP2B6 activity and specifically inhibition of CYP2B6-mediated methadone metabolism. An initial screen evaluated inhibition of CYP2B6-catalyzed 7-ethoxy-4-(trifluoromethyl) coumarin O-deethylation. Hits were further evaluated for inhibition of racemic methadone metabolism, including mechanism of inhibition and kinetic constants. In order of decreasing potency, the most effective inhibitors of methadone metabolism were dihydromethysticin (competitive, K i 0.074 µM), gambogic acid (noncompetitive, K i 6 µM), and 2,2'-dihydroxychalcone (noncompetitive, K i 16 µM). Molecular modeling of CYP2B6-methadone and inhibitor binding showed substrate and inhibitor binding position and orientation and their interactions with CYP2B6 residues. These results show that CYP2B6 and CYP2B6-catalyzed methadone metabolism are inhibited by certain natural products, at concentrations which may be clinically relevant. SIGNIFICANCE STATEMENT: This investigation identified several natural product constituents which inhibit in vitro human recombinant CYP2B6 and CYP2B6-catalyzed N-demethylation of the opioid methadone. The most potent inhibitors (K i) were dihydromethysticin (0.074 µM), gambogic acid (6 µM) and 2,2'-dihydroxychalcone (16 µM). Molecular modeling of ligand interactions with CYP2B6 found that dihydromethysticin and 2,2'-dihydroxychalcone bound at the active site, while gambogic acid interacted with an allosteric site on the CYP2B6 surface. Natural product constituents may inhibit CYP2B6 and methadone metabolism at clinically relevant concentrations.


Assuntos
Produtos Biológicos , Chalconas , Metadona , Humanos , Metadona/farmacocinética , Citocromo P-450 CYP2B6/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Microssomos Hepáticos/metabolismo
2.
Br J Clin Pharmacol ; 88(11): 4881-4893, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538637

RESUMO

AIMS: Methadone metabolism and clearance are determined principally by polymorphic cytochrome P4502B6 (CYP2B6). Some CYP2B6 allelic variants affect methadone metabolism in vitro and disposition in vivo. We assessed methadone metabolism by CYP2B6 minor variants in vitro. We also assessed the influence of CYP2B6 variants, and P450 oxidoreductase (POR) and CYP2C19 variants, on methadone clearance in surgical patients in vivo. METHODS: CYP2B6 and P450 oxidoreductase variants were coexpressed with cytochrome b5 . The metabolism of methadone racemate and enantiomers was measured at therapeutic concentrations and intrinsic clearances were determined. Adolescents receiving methadone for surgery were genotyped for CYP2B6, CYP2C19 and POR, and methadone clearance and metabolite formation clearance were determined. RESULTS: In vitro, CYP2B6.4 was more active than wild-type CYP2B6.1. CYPs 2B6.5, 2B6.6, 2B6.7, 2B6.9, 2B6.17, 2B6.19 and 2B6.26 were less active. CYPs 2B6.16 and 2B6.18 were inactive. CYP2B6.1 expressed with POR variants POR.28, POR.5 and P228L had lower rates of methadone metabolism than wild-type reductase. In vivo, methadone clinical clearance decreased linearly with the number of CYP2B6 slow metabolizer alleles, but was not different in CYP2C19 slow or rapid metabolizer phenotypes, or in carriers of the POR*28 allele. CONCLUSIONS: Several CYP2B6 and POR variants were slow metabolizers of methadone in vitro. Polymorphisms in CYP2B6, but not CYP2C19 or P450 reductase, affected methadone clearance in vivo. CYP2B6 polymorphisms 516G>T and 983T>C code for canonical loss of function variants and should be assessed when considering genetic influences on clinical methadone disposition. These complementary translational in vitro and in vivo results inform on pharmacogenetic variability affecting methadone disposition in patients.


Assuntos
Metadona , Farmacogenética , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b
3.
BMC Infect Dis ; 21(1): 230, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33639884

RESUMO

BACKGROUND: Respiratory tract infections (RTIs) are the common diseases in children and the routine detection methods frequently fail to identify the infectious pathogens especially for viruses. The Filmarray respiratory panel (FARP) can reliably and rapidly identify viruses and bacteria pathogens. This study is to evaluate the performance and clinical significance of FARP in children. METHODS: Children diagnosed with RTIs in pediatric intensive care unit (PICU) were enrolled in this study. Nasopharyngeal secretion (NPS) samples of these children were collected and the FARP assay for 17 pathogens and routine microbiological methods were performed. Clinical data of all patients was also collected and evaluated. RESULTS: A total of 90 children were enrolled into this study and 58 patients (64.4%) were positive for 13 pathogens by FARP, with 18 being detected positive with multiple-virus (31.3%, 18/58). Human rhinovirus/enterovirus (21.0%%, 17/58) were the predominant pathogen, followed by adenovirus (18.5%). Higher proportions of various pathogens were identified in the infant and toddler (0-2 years) groups with human rhinovirus/enterovirus being mostly virus. Adenovirus were common in the group aged 3-5 years, but only three pathogens including M.pneumoniae, respiratory syncytial virus, and adenovirus were also found in age group (6-14 years). Among 58 FARP positive patients, significant differences were found in antibiotic prescription and use of glucocorticoid between the single-organism-positive group and the multi-organism-positive group (P < 0.05). Furthermore, there was significant difference in use of anti-virus and usage of glucocorticoid between severe respiratory infections group and non severe respiratory infections group (P < 0.05). CONCLUSIONS: This study demonstrated that FARP can provide the rapid detection of respiratory virus and atypical bacteria for children, especially with severe respiratory tract infections.


Assuntos
Técnicas Microbiológicas/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Infecções Respiratórias/diagnóstico , Virologia/métodos , Adolescente , Idade de Início , Bactérias/genética , Bactérias/isolamento & purificação , Criança , Pré-Escolar , Diagnóstico Diferencial , Feminino , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Pediátrica , Masculino , Nasofaringe/microbiologia , Nasofaringe/virologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Estudos Retrospectivos , Vírus/genética , Vírus/isolamento & purificação
4.
BMC Psychiatry ; 21(1): 21, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422041

RESUMO

BACKGROUND: Schizophrenia is associated with widespread cognitive impairment. The MATRICS Consensus Cognitive Battery (MCCB) is most frequently used to assess cognitive function. However, the MCCB test is time consuming for the clinician. Virtual reality (VR) has emerged as an adjunctive tool to overcome this limitation and provides a new means to assess cognitive function. METHODS: The present study examined the validity and safety of using VR technology to assess cognitive function in Han Chinese patients with schizophrenia (SZs). The VR cognition training system (VRCTS) was used to simulate real-life supermarkets and assess cognitive function. Thirty-two SZs and 25 healthy controls (HCs) underwent VRCTS and MCCB assessments. An auxiliary diagnosis model was created based on the outcomes of the VRCTS to classify SZs and HCs by cognitive impairment. RESULTS: Significant differences in completion time between the SZs and HCs were detected using the VRCTS. SZs spent more time completing tasks than HCs. The outcome of VRCTS significantly correlated with the MCCB. The auxiliary diagnosis model had a sensitivity of 88.89% and a specificity of 88.89%. CONCLUSIONS: These results support the use of VR technology in the assessment of cognitive impairment in Han Chinese schizophrenia patients. TRIAL REGISTRATION: China Clinical Trial Registry, ChiVTR1800016121. Registered 13 May 2018, http://www.chictr.org.cn/showproj.aspx?proj=27233.


Assuntos
Esquizofrenia , Realidade Virtual , China , Cognição , Estudos Transversais , Humanos , Testes Neuropsicológicos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico , Psicologia do Esquizofrênico
5.
Acta Neuropsychiatr ; 33(4): 182-190, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33818354

RESUMO

OBJECTIVE: A few former studies suggested that there are partial overlaps in abnormal brain structure and cognitive function between hypochondriasis (HS) and schizophrenia (SZ). But their differences in brain activity and cognitive function were unclear. METHODS: Twenty-one HS patients, 23 SZ patients, and 24 healthy controls (HC) underwent resting-state functional magnetic resonance imaging (rs-fMRI) with the regional homogeneity analysis (ReHo), subsequently exploring the relationship between ReHo value and cognitive functions. The support vector machines (SVM) were used on effectiveness evaluation of ReHo for differentiating HS from SZ. RESULTS: Compared with HC, HS showed significantly increased ReHo values in right middle temporal gyrus (MTG), left inferior parietal lobe (IPL), and right fusiform gyrus (FG), while SZ showed increased ReHo in left insula, decreased ReHo values in right paracentral lobule. Additionally, HS showed significantly higher ReHo values in FG, MTG, and left paracentral lobule, but lower in insula than SZ. The higher ReHo values in insula were associated with worse performance in MATRICS consensus cognitive battery (MCCB) in HS group. SVM analysis showed a combination of the ReHo values in insula and FG was able to satisfactorily distinguish the HS and SZ patients. CONCLUSION: Our results suggested that the altered default mode network (DMN), of which abnormal spontaneous neural activity occurs in multiple brain regions, might play a key role in the pathogenesis of HS, and the resting-state alterations of insula are closely related to cognitive dysfunction in HS. Furthermore, the combination of the ReHo in FG and insula was a relatively ideal indicator to distinguish HS from SZ.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Cognição/fisiologia , Hipocondríase/patologia , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/patologia , Adolescente , Adulto , Encéfalo/fisiopatologia , Rede de Modo Padrão , Feminino , Lobo Frontal/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Máquina de Vetores de Suporte , Adulto Jovem
6.
Drug Metab Dispos ; 48(6): 438-445, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32238417

RESUMO

Bioactivation of the antidepressant and smoking cessation drug bupropion is catalyzed predominantly by CYP2B6. The metabolite hydroxybupropion derived from t-butylhydroxylation is considered to contribute to the antidepressant and smoking-cessation effects of the parent drug. Bupropion hydroxylation is the canonical in vitro and in vivo probe for CYP2B6 activity. P450 also requires obligate partnership with P450 oxidoreductase (POR). Human CYP2B6 and POR genes are highly polymorphic. Some CYP2B6 variants affect bupropion disposition. This investigation evaluated the influence of several human CYP2B6 and POR genetic variants on stereoselective bupropion metabolism, using an insect cell coexpression system containing CYP2B6, POR, and cytochrome b 5 Based on intrinsic clearances (Clints), relative activities for S,S-hydroxybupropion formation were in the order CYP2B6.4 > CYP2B6.1 > CYP2B6.17 > CYP2B6.5 > CYP2B6.6 ≈ CYP2B6.26 ≈ CYP2B6.19 > CYP2B6.7 > CYP2B6.9 > > CYP2B6.16 and CYP2B6.18; relative activities for R,R-hydroxybupropion formation were in the order CYP2B6.17 > CYP2B6.4 > CYP2B6.1 > CYP2B6.5 ≈ CYP2B6.19 ≈ CYP2B6.26 > CYP2B6.6 > CYP2B6.7 ≈ CYP2B6.9 > > CYP2B6.16 and CYP2B6.18. Bupropion hydroxylation was not influenced by POR variants. CYP2B6-catalyzed bupropion hydroxylation is stereoselective. Though Vmax and Km varied widely among CYP2B6 variants, stereoselectivity was preserved, reflected by similar Clint(S,S-hydroxybupropion)/Clint(R,R-hydroxybupropion) ratios (1.8-2.9), except CYP2B6.17, which was less enantioselective. Established concordance between human bupropion hydroxylation in vitro and in vivo, together with these new results, suggests additional CYP2B6 variants may influence human bupropion disposition. SIGNIFICANCE STATEMENT: Bupropion pharmacokinetics, metabolism, and clinical effects are affected by the CYP2B6*6 polymorphism. Other expressed CYP2B6 polymorphisms had diminished (*5, *6, *7, *9, *19, *26) or defective (*16, *18) in vitro bupropion hydroxylation. P450 oxidoreductase genetic variants had no effect on metabolism, suggesting no clinical consequence of this polymorphism. These CYP2B6 polymorphisms may portend diminished in vivo bupropion hydroxylation and predict additional clinically important variant alleles.


Assuntos
Bupropiona/farmacocinética , Citocromo P-450 CYP2B6/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Bupropiona/química , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/isolamento & purificação , Sistema Enzimático do Citocromo P-450/genética , Ensaios Enzimáticos , Humanos , Hidroxilação , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato
7.
Anticancer Drugs ; 31(4): 411-422, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31929350

RESUMO

The aim of this study was to probe the influence of microRNA-301b (miR-301b) in esophageal cancer pathogenesis. Based on the data acquired from The Cancer Genome Atlas database, we found that miR-301b was highly expressed in esophageal cancer tissues and high expression of miR-301b was related to worse prognosis in patients with esophageal cancer. Quantitative real-time PCR revealed that the expression of miR-301b was higher in all examined esophageal cancer cell lines (ECA109, KY-SE150, TE-1, and NEC) than that in a human esophageal epithelial cell line (HEEC). Upregulation/downregulation of miR-301b facilitated/suppressed the growth, migration, and invasion of ECA109/KY-SE150 cells. Synaptosome-associated protein 91 (SNAP91) was proved to be one of the target genes of miR-301b and was negatively modulated by miR-301b. Besides, SNAP91 was lowly expressed in human esophageal cancer tissues and cell lines. Meanwhile, low expression of SNAP91 was concerned with poor prognosis in patients with esophageal cancer. Furthermore, we discovered that overexpression/depletion of SNAP91 suppressed/facilitated the proliferation of KY-SE150/ECA109 cells. MiR-301b and SNAP91 had little impact on HEEC cell proliferation and this degree of influence was negligible compared with their impacts on esophageal cancer cell proliferation. By rescue assay, we showed that overexpression of SNAP91 restrained the growth, migration, and invasion of ECA109 cells with overexpressed miR-301b while knockdown of SNAP91 showed the contrary effects on KY-SE150 cells with downregulated miR-301b. These consequences indicated that miR-301b played an important effect on esophageal cancer cells through regulating SNAP91, insinuating that miR-301b/SNAP91 might be novel potential targets for esophageal cancer therapy and prognosis.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Humanos , Masculino , Proteínas Monoméricas de Montagem de Clatrina/genética , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
8.
Drug Metab Dispos ; 47(10): 1195-1205, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31324697

RESUMO

Efavirenz (more specifically the S-enantiomer) is a cornerstone antiretroviral therapy for treatment of HIV infection. The major primary metabolite is S-8-hydroxyefavirenz, which does not have antiretroviral activity but is neurotoxic. Cytochrome P450 2B6 (CYP2B6) is the major enzyme catalyzing S-8-hydroxyefavirenz formation. CYP2B6 genetics and drug interactions are major determinants of clinical efavirenz disposition and dose adjustment. In addition, as a prototypic CYP2B6 substrate, S-efavirenz and analogs can inform on the structure, activity, catalytic mechanisms, and stereoselectivity of CYP2B6. Metabolism of R-efavirenz by CYP2B6 remains unexplored. This investigation assessed S-efavirenz metabolism by clinically relevant CYP2B6 genetic variants. This investigation also evaluated R-efavirenz hydroxylation by wild-type CYP2B6.1 and CYP2B6 variants. S-Efavirenz 8-hydroxylation by wild-type CYP2B6.1 and variants exhibited positive cooperativity and apparent cooperative substrate inhibition. On the basis of Clmax values, relative activities for S-efavirenz 8-hydroxylation were in the order CYP2B6.4 > CYP2B6.1 ≈ CYP2B6.5 ≈ CYP2B6.17 > CYP2B6.6 ≈ CYP2B6.7 ≈ CYP2B6.9 ≈ CYP2B6.19 ≈ CYP2B6.26; CYP2B6.16 and CYP2B6.18 showed minimal activity. Rates of R-efavirenz metabolism were approximately 1/10 those of S-efavirenz for wild-type CYP2B6.1 and variants. On the basis of Clmax values, there was 14-fold enantioselectivity (S > R-efavirenz) for wild-type CYP2B6.1, and 5- to 22-fold differences for other CYP2B6 variants. These results show that both CYP2B6 516G > T (CYP2B6*6 and CYP2B6*9) and 983T > C (CYP2B6*16 and CYP2B6*18) polymorphisms cause canonical diminishment or loss-of-function variants for S-efavirenz 8-hydroxylation, provide a mechanistic basis for known clinical pharmacogenetic differences in efavirenz disposition, and may predict additional clinically important variant alleles. Efavirenz is the most stereoselective CYP2B6 drug substrate yet identified and may be a useful probe for the CYP2B6 active site and catalytic mechanisms. SIGNIFICANCE STATEMENT: Clinical disposition of the antiretroviral S-efavirenz is affected by CYP2B6 polymorphisms. Expressed CYP2B6 with 516G>T (CYP2B6*6 and CYP2B6*9), and 983T>C (CYP2B6*16 and CYP2B6*18) polymorphisms had a diminishment or loss of function for efavirenz 8-hydroxylation. This provides a mechanistic basis for efavirenz clinical pharmacogenetics and may predict additional clinically important variant alleles. Efavirenz metabolism showed both cooperativity and cooperative substrate inhibition. With greater than 10-fold enantioselectivity (S- vs. R- metabolism), efavirenz is the most stereoselective CYP2B6 drug substrate yet identified. These findings may provide mechanistic insights.


Assuntos
Benzoxazinas/metabolismo , Benzoxazinas/farmacocinética , Citocromo P-450 CYP2B6/genética , Infecções por HIV/tratamento farmacológico , Inibidores da Transcriptase Reversa/farmacocinética , Alcinos , Animais , Benzoxazinas/administração & dosagem , Benzoxazinas/química , Benzoxazinas/toxicidade , Linhagem Celular , Ciclopropanos , Citocromo P-450 CYP2B6/metabolismo , Infecções por HIV/genética , Humanos , Insetos , Polimorfismo de Nucleotídeo Único , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Inibidores da Transcriptase Reversa/administração & dosagem , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/toxicidade , Estereoisomerismo
9.
Mol Pharm ; 16(2): 898-906, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30589555

RESUMO

Ketamine is analgesic at anesthetic and subanesthetic doses, and it has been used recently to treat depression. Biotransformation mediates ketamine effects, influencing both systemic elimination and bioactivation. CYP2B6 is the major catalyst of hepatic ketamine N-demethylation and metabolism at clinically relevant concentrations. Numerous CYP2B6 substrates contain halogens. CYP2B6 readily forms halogen-protein (particularly Cl-π) bonds, which influence substrate selectivity and active site orientation. Ketamine is chlorinated, but little is known about the metabolism of halogenated analogs. This investigation evaluated halogen substitution effects on CYP2B6-catalyzed ketamine analogs N-demethylation in vitro and modeled interactions with CYP2B6 using various computational approaches. Ortho phenyl ring halogen substituent changes caused substantial (18-fold) differences in Km, on the order of Br (bromoketamine, 10 µM) < Cl < F < H (deschloroketamine, 184 µM). In contrast, Vmax varied minimally (83-103 pmol/min/pmol CYP). Thus, apparent substrate binding affinity was the major consequence of halogen substitution and the major determinant of N-demethylation. Docking poses of ketamine and analogs were similar, sharing a π-stack with F297. Libdock scores were deschloroketamine < bromoketamine < ketamine < fluoroketamine. A Bayesian log Km model generated with Assay Central had a ROC of 0.86. The probability of activity at 15 µM for ketamine and analogs was predicted with this model. Deschloroketamine scores corresponded to the experimental Km, but the model was unable to predict activity with fluoroketamine. The binding pocket of CYP2B6 also suggested a hydrophobic component to substrate docking, on the basis of a strong linear correlation ( R2 = 0.92) between lipophilicity ( Alog P) and metabolism (log Km) of ketamine and analogs. This property may be the simplest design criteria to use when considering similar compounds and CYP2B6 affinity.


Assuntos
Biologia Computacional/métodos , Citocromo P-450 CYP2B6/metabolismo , Halogênios/química , Ketamina/química , Ketamina/metabolismo , Teorema de Bayes , Formaldeído/química
10.
Int J Legal Med ; 133(6): 1925-1933, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31273446

RESUMO

The present study aims to evaluate the relation between chronological age and the ratio of pulp volume (PV) to enamel volume (EV) of impacted mandibular third molars (IMTMs) by using cone-beam computed tomography (CBCT) images and an improved 3D image segmentation technique. A sample of CBCT images of IMTM was collected from 414 northern Chinese subjects (214 male and 200 female clinical patients) ranging in age from 20 to 65 years. The GrowCut effect image segmentation (GCEIS) module algorithm was used to calculate the PV and EV from CBCT images. The total sample was divided into a training group and validation group in a ratio of 7 to 3. The PV/EV ratio (PEr) in the training sample was used to develop a mathematical formula for age estimation as follows: age = - 5.817-21.726 × Ln PEr (p < 0.0001) (Ln, natural logarithm). The mean absolute error (MAE) and root mean square error (RMSE) were used to determine the precision and accuracy of the mathematical formula in the validation group and all samples. The MAEs in the male, female, and pooled gender samples were 9.223, 7.722, and 8.41, respectively, and the RMSEs in the male, female, and pooled gender samples were 10.76, 9.58, and 9.986, respectively. The precise and accurate results indicate that the PEr of IMTM in CBCT images is a potential index for dental age estimation and is possible to be used in forensic medicine.


Assuntos
Determinação da Idade pelos Dentes/métodos , Esmalte Dentário/diagnóstico por imagem , Polpa Dentária/diagnóstico por imagem , Dente Serotino/diagnóstico por imagem , Dente Impactado/diagnóstico por imagem , Adulto , Idoso , China , Tomografia Computadorizada de Feixe Cônico , Esmalte Dentário/crescimento & desenvolvimento , Polpa Dentária/crescimento & desenvolvimento , Feminino , Odontologia Legal/métodos , Humanos , Masculino , Mandíbula , Pessoa de Meia-Idade , Adulto Jovem
11.
BMC Infect Dis ; 19(1): 678, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370804

RESUMO

BACKGROUND: Fecal colonization with carbapenem-resistant Enterobacteriaceae (CRE) is a risk factor for bacterial translocation resulting in subsequent endogenous infections. The purpose of this study is to investigate the prevalence of CRE strains colonization in stool samples of outpatient in a tertiary pediatric hospital of Shanghai, China. METHODS: In a retrospective study, fecal samples were consecutively obtained from patients in 2016 and screening test for CRE was conducted by using home-made MacConkey agar. Antimicrobial susceptibility was determined by the broth microdilution method and ß-lactamases were characterized by polymerase chain reaction (PCR) assays and DNA sequencing. Multilocus sequence typing (MLST) was performed for the genetic relationships of the isolates. RESULTS: A total of 880 fecal samples were included for this screening test and 32 CRE strains were identified in 32 non-duplicate fecal samples from 32 children (1.3 ± 1.5 years), with a carriage rate of 3.6%. These strains mainly distributed in Klebsiella pnuemoniae (37.5%) and Escherichia coli (37.5%). All CRE strains showed high resistance to most of the routinely used antibiotics (> 90%) except for polymyxin B and tigecycline. The blaNDM gene was the major carbapenemase gene harbored by gastrointestinal CRE strains, followed by blaKPC-2, blaIMP-26, and blaIMP-4. Other ß-Lactamase genes including blaCTX-M, blaSHV, blaTEM-1, and blaDHA-1 were also detected. MLST analysis revealed that various sequence types (STs) were detected in these strains, with ST11 and ST37 being more prevalent in K.pneumoniae and ST101 in E.coli. CONCLUSIONS: This study revealed the prevalence of CRE fecal carriage in children from outpatient and urgent implementation of infection control measure should be conducted to limit the spread of CRE strains.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/patogenicidade , Infecções por Enterobacteriaceae/epidemiologia , Fezes/microbiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Pré-Escolar , China/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Escherichia coli/genética , Feminino , Humanos , Lactente , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Masculino , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Pacientes Ambulatoriais/estatística & dados numéricos , Prevalência , Estudos Retrospectivos , beta-Lactamases/genética
12.
Can J Infect Dis Med Microbiol ; 2019: 5975837, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30733846

RESUMO

OBJECTIVE: This study was to investigate the microbiological characteristics and the relationship between the time to positivity (TTP) of blood cultures and different bacterial species and to assess the clinical value of TTP in children with bloodstream infections (BSIs). METHODS: The TTP of all the blood cultures from children with suspected BSIs was retrospectively collected in 2016. The microbiological characteristics and the relationship between the TTP of blood cultures and different bacterial species were also analyzed. RESULTS: A total of 808 strains were isolated from 15835 blood cultures collected, and 145 (17.9%) were Gram-negative, 636 (78.7%) were Gram-positive, and 27 (3.3%) were fungi. The bacteria were divided into definite pathogens (174), possible pathogens (592), fungi (27), and contaminants (15). The average TTP of all positive blood cultures was 30.97 and ranged from 3.23 h to 92.73 h. The TTP of Gram-negative strains was significantly shorter than that of Gram-positive strains (P < 0.001) and fungi (P = 0.032). The mean TTP for E. coli (15.60 h) was shortest within the group of Gram-negative isolates, and the mean TTP for Streptococcus (17.34 h) within the group of Gram-positive isolates. Significant difference of the TTP was detected in methicillin-resistant vs methicillin-susceptible S. aureus, extended-spectrum beta-lactamases (ESBLs) positive vs negative Enterobacteriaceae, and extensive drug-resistant and non-XDR A. baumannii. The median TTP in patients with BSI was significantly shorter than in those without it (P < 0.001). ROC curve analysis indicated that the TTP cutoff value of CoNS, S. aureus, E. coli, and K. pneumoniae was 22.72 h, 19.6 h, 18.58 h, and 16.43 h, respectively, with most sensitive and specific predictor of BSIs. CONCLUSIONS: Our data acknowledged that TTP is a valuable index for the early prognosis of BSIs. TTP not only provides additional utility as a general predictor of bacteria with smear result but also provides the implication of drug-resistant organisms.

13.
Anesthesiology ; 129(4): 756-768, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30085944

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Human ketamine N-demethylation to norketamine in vitro at therapeutic concentrations is catalyzed predominantly by the cytochrome P4502B6 isoform (CYP2B6). The CYP2B6 gene is highly polymorphic. CYP2B6.6, the protein encoded by the common variant allele CYP2B6*6, exhibits diminished ketamine metabolism in vitro compared with wild-type CYP2B6.1. The gene for cytochrome P450 oxidoreductase (POR), an obligatory P450 coenzyme, is also polymorphic. This investigation evaluated ketamine metabolism by genetic variants of human CYP2B6 and POR. METHODS: CYP2B6 (and variants), POR (and variants), and cytochrome b5 (wild-type) were coexpressed in a cell system. All CYP2B6 variants were expressed with wild-type POR and b5. All POR variants were expressed with wild-type CYP2B6.1 and b5. Metabolism of R- and S-ketamine enantiomers, and racemic RS-ketamine to norketamine enantiomers, was determined using stereoselective high-pressure liquid chromatography-mass spectrometry. Michaelis-Menten kinetic parameters were determined. RESULTS: For ketamine enantiomers and racemate, metabolism (intrinsic clearance) was generally wild-type CYP2B6.1 > CYP2B6.4 > CYP2B6.26, CYP2B6.19, CYP2B6.17, CYP2B6.6 > CYP2B6.5, CYP2B6.7 > CYP2B6.9. CYP2B6.16 and CYP2B6.18 were essentially inactive. Activity of several CYP2B6 variants was less than half that of CYP2B6.1. CYP2B6.9 was 15 to 35% that of CYP2B6.1. The order of metabolism was wild-type POR.1 > POR.28, P228L > POR.5. CYP2B6 variants had more influence than POR variants on ketamine metabolism. Neither CYP2B6 nor POR variants affected the stereoselectivity of ketamine metabolism (S > R). CONCLUSIONS: Genetic variants of CYP2B6 and P450 oxidoreductase have diminished ketamine N-demethylation activity, without affecting the stereoselectivity of metabolism. These results suggest candidate genetic polymorphisms of CYP2B6 and P450 oxidoreductase for clinical evaluation to assess consequences for ketamine pharmacokinetics, elimination, bioactivation, and therapeutic effects.


Assuntos
Analgésicos/metabolismo , Citocromo P-450 CYP2B6/genética , Sistema Enzimático do Citocromo P-450/genética , Variação Genética/genética , Ketamina/metabolismo , Analgésicos/química , Animais , Humanos , Ketamina/química , Células Sf9 , Estereoisomerismo , Espectrometria de Massas em Tandem/métodos
14.
Arch Biochem Biophys ; 618: 23-31, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28129982

RESUMO

The best-studied amidase signature (AS) enzyme is probably fatty acid amide hydrolase (FAAH). Closely related to FAAH is mandelamide hydrolase (MAH), whose substrate specificity and mechanism of catalysis are described in this paper. First, we developed a convenient chromogenic substrate, 4-nitrophenylacetamide, for MAH. The lack of reactivity of MAH with the corresponding ethyl ester confirmed the very limited size of the MAH leaving group site. The reactivity of MAH with 4-nitrophenyl acetate and methyl 4-nitrophenyl carbonate, therefore, suggested formation of an "inverse" acyl-enzyme where the small acyl-group occupies the normal leaving group site. We have interpreted the specificity of MAH for phenylacetamide substrates and small leaving groups in terms of its active site structure, using a homology model based on a FAAH crystal structure. The relevant structural elements were compared with those of FAAH. Phenylmethylboronic acid is a potent inhibitor of MAH (Ki = 27 nM), presumably because it forms a transition state analogue structure with the enzyme. O-Acyl hydroxamates were not irreversible inactivators of MAH but some were found to be transient inhibitors.


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Hidrolases/química , Ácidos Hidroxâmicos/química , Ácidos Mandélicos/química , Sítios de Ligação , Carbonatos/química , Catálise , Domínio Catalítico , Cristalização , Hidrólise , Cinética , Conformação Molecular , Mutagênese Sítio-Dirigida , Nitrofenóis/química , Pseudomonas putida/enzimologia , Especificidade por Substrato
15.
J Bacteriol ; 196(15): 2861-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24891442

RESUMO

Arabinose-5-phosphate isomerases (APIs) catalyze the interconversion of d-ribulose-5-phosphate and D-arabinose-5-phosphate, the first step in the biosynthesis of 3-deoxy-D-manno-octulosonic acid (Kdo), an essential component of the lipopolysaccharide in Gram-negative bacteria. Classical APIs, such as Escherichia coli KdsD, contain a sugar isomerase domain and a tandem cystathionine beta-synthase domain. Despite substantial effort, little is known about structure-function relationships in these APIs. We recently reported an API containing only a sugar isomerase domain. This protein, c3406 from E. coli CFT073, has no known physiological function. In this study, we investigated a putative single-domain API from the anaerobic Gram-negative bacterium Bacteroides fragilis. This putative API (UniProt ID Q5LIW1) is the only protein encoded by the B. fragilis genome with significant identity to any known API, suggesting that it is responsible for lipopolysaccharide biosynthesis in B. fragilis. We tested this hypothesis by preparing recombinant Q5LIW1 protein (here referred to by the UniProt ID Q5LIW1), characterizing its API activity in vitro, and demonstrating that the gene encoding Q5LIW1 (GenBank ID YP_209877.1) was able to complement an API-deficient E. coli strain. We demonstrated that Q5LIW1 is inhibited by cytidine 5'-monophospho-3-deoxy-D-manno-2-octulosonic acid, the final product of the Kdo biosynthesis pathway, with a Ki of 1.91 µM. These results support the assertion that Q5LIW1 is the API that supports lipopolysaccharide biosynthesis in B. fragilis and is subject to feedback regulation by CMP-Kdo. The sugar isomerase domain of E. coli KdsD, lacking the two cystathionine beta-synthase domains, demonstrated API activity and was further characterized. These results suggest that Q5LIW1 may be a suitable system to study API structure-function relationships.


Assuntos
Aldose-Cetose Isomerases/genética , Bacteroides fragilis/enzimologia , Monofosfato de Citidina/análogos & derivados , Açúcares Ácidos/farmacologia , Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/isolamento & purificação , Aldose-Cetose Isomerases/metabolismo , Arabinose/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides fragilis/efeitos dos fármacos , Bacteroides fragilis/genética , Monofosfato de Citidina/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Teste de Complementação Genética , Cinética , Lipopolissacarídeos/metabolismo , Metais/análise , Peso Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas Recombinantes , Especificidade por Substrato
16.
J Glob Antimicrob Resist ; 37: 81-85, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460750

RESUMO

OBJECTIVES: The dissemination of New Delhi metallo-ß-lactamase-5 (NDM-5) among various species of Enterobacterales has attracted serious global attention. Here, we characterise the genomic characterisation of blaNDM-5-IncX3 plasmid (pNDM-KA3) in an ST4 Klebsiella aerogenes (KA3) strain isolated from a neonate with pneumonia. METHODS: Antimicrobial susceptibility and multilocus sequence typing was performed for the KA3. The plasmid conjugation assay and plasmid stability of the KA3 (pNDM-KA3) were also analysed. The pNDM-KA3 plasmid was further analysed by whole-genome sequencing and comparative analysis to determine the genetic environment of blaNDM-5. RESULTS: The KA3 strain belongs to ST4 and shows high resistance to ß-lactam antibiotics, including carbapenems, but is susceptible to ciprofloxacin, amikacin, tigecycline, and colistin. The pNDM-KA3 was successfully transferred to the recipient E. coli J53 and showed strong stability in K. aerogenes. Genomic sequencing revealed that the pNDM-KA3 plasmid was assigned to plasmid incompatibility group X3 with 43367 bp, and a conserved structure sequence of △IS3000-△ISAba125-IS5-blaNDM-5-bleMBL- trpF-dsbC-IS26 was detected upstream and downstream of the blaNDM-5 gene. Further analysis revealed that insertion sequences mediated the dissemination of blaNDM-5 from other species of Enterobacterales. The pNDM-KA3 showed high similarity to blaNDM-5-harbouring plasmids in other species of Enterobacterales, with these plasmids carrying genes for replication (repB), partitioning (parA and parB), stability (hns), and conjugative transfer (virB and virD). CONCLUSIONS: Continued monitoring for the dissemination of blaNDM-5 among uncommon Enterobacterales species should be further reinforced.


Assuntos
Antibacterianos , Enterobacter aerogenes , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos , Sequenciamento Completo do Genoma , beta-Lactamases , Plasmídeos/genética , beta-Lactamases/genética , Humanos , Antibacterianos/farmacologia , Enterobacter aerogenes/genética , Enterobacter aerogenes/efeitos dos fármacos , Enterobacter aerogenes/isolamento & purificação , Recém-Nascido , Genoma Bacteriano , Infecções por Klebsiella/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Conjugação Genética
17.
Biol Psychiatry ; 96(1): 26-33, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38142717

RESUMO

BACKGROUND: Suicidal ideation is a substantial clinical challenge in treatment-resistant depression (TRD). Recent work demonstrated promising antidepressant effects in TRD patients with no or mild suicidal ideation using a specific protocol termed intermittent theta burst stimulation (iTBS). Here, we examined the clinical effects of accelerated schedules of iTBS and continuous TBS (cTBS) in patients with moderate to severe suicidal ideation. METHODS: Patients with TRD and moderate to severe suicidal ideation (n = 44) were randomly assigned to receive accelerated iTBS or cTBS treatment. Treatments were delivered in 10 daily TBS sessions (1800 pulses/session) for 5 consecutive days (total of 90,000 pulses). Neuronavigation was employed to target accelerated iTBS and cTBS to the left and right dorsolateral prefrontal cortex (DLPFC), respectively. Clinical outcomes were evaluated in a 4-week follow-up period. RESULTS: Accelerated cTBS was superior to iTBS in the management of suicidal ideation (pweek 1 = .027) and anxiety symptoms (pweek 1 = .01). Accelerated iTBS and cTBS were comparable in antidepressant effects (p < .001; accelerated cTBS: mean change at weeks 1, 3, 5 = 49.55%, 54.99%, 53.11%; accelerated iTBS: mean change at weeks 1, 3, 5 = 44.52%, 48.04%, 51.74%). No serious adverse events occurred during the trial. One patient withdrew due to hypomania. The most common adverse event was discomfort at the treatment site (22.73% in both groups). CONCLUSIONS: These findings provide the first evidence that accelerated schedules of left DLPFC iTBS and right DLPFC cTBS are comparably effective in managing antidepressant symptoms and indicate that right DLPFC cTBS is potentially superior in reducing suicidal ideation and anxiety symptoms.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Ideação Suicida , Estimulação Magnética Transcraniana , Humanos , Masculino , Feminino , Transtorno Depressivo Resistente a Tratamento/terapia , Estimulação Magnética Transcraniana/métodos , Adulto , Pessoa de Meia-Idade , Resultado do Tratamento , Córtex Pré-Frontal Dorsolateral , Ritmo Teta/fisiologia , Córtex Pré-Frontal , Ansiedade/terapia
18.
J Affect Disord ; 360: 336-344, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824965

RESUMO

BACKGROUND: The absence of clinically-validated biomarkers or objective protocols hinders effective major depressive disorder (MDD) diagnosis. Compared to healthy control (HC), MDD exhibits anomalies in plasma protein levels and neuroimaging presentations. Despite extensive machine learning studies in psychiatric diagnosis, a reliable tool integrating multi-modality data is still lacking. METHODS: In this study, blood samples from 100 MDD and 100 HC were analyzed, along with MRI images from 46 MDD and 49 HC. Here, we devised a novel algorithm, integrating graph neural networks and attention modules, for MDD diagnosis based on inflammatory cytokines, neurotrophic factors, and Orexin A levels in the blood samples. Model performance was assessed via accuracy and F1 value in 3-fold cross-validation, comparing with 9 traditional algorithms. We then applied our algorithm to a dataset containing both the aforementioned protein quantifications and neuroimages, evaluating if integrating neuroimages into the model improves performance. RESULTS: Compared to HC, MDD showed significant alterations in plasma protein levels and gray matter volume revealed by MRI. Our new algorithm exhibited superior performance, achieving an F1 value and accuracy of 0.9436 and 94.08 %, respectively. Integration of neuroimaging data enhanced our novel algorithm's performance, resulting in an improved F1 value and accuracy, reaching 0.9543 and 95.06 %. LIMITATIONS: This single-center study with a small sample size requires future evaluations on a larger test set for improved reliability. CONCLUSIONS: In comparison to traditional machine learning models, our newly developed MDD diagnostic model exhibited superior performance and showed promising potential for inclusion in routine clinical diagnosis for MDD.


Assuntos
Biomarcadores , Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Neuroimagem , Humanos , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/diagnóstico por imagem , Biomarcadores/sangue , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Masculino , Neuroimagem/métodos , Pessoa de Meia-Idade , Algoritmos , Orexinas/sangue , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Citocinas/sangue , Aprendizado de Máquina , Atenção , Estudos de Casos e Controles
19.
Front Public Health ; 11: 1251609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074706

RESUMO

Objective: We investigated the epidemiological surveillance of the intestinal colonization and nosocomial infection of carbapenem-resistant Enterobacteriales (CRE) isolates from inpatients, which can provide the basis for developing effective prevention. Methods: A total of 96 CRE strains were collected from 1,487 fecal samples of hospitalized children between January 2016 and June 2017, which were defined as the "CRE colonization" group. In total, 70 CRE clinical isolates were also randomly selected for the comparison analysis and defined as the "CRE infection" group. The antimicrobial susceptibility of all strains was determined by the microdilution broth method. Polymerase chain reaction (PCR) was used to analyze carbapenemase genes, plasmid typing, and integrons. Multilocus sequence typing was further used to determine clonal relatedness. Results: In the "CRE colonization" group, Klebsiella pneumoniae was mostly detected with a rate of 42.7% (41/96), followed by Escherichia coli (34.4%, 33/96) and Enterobacter cloacae (15.6%, 15/96). The ST11 KPC-2 producer, ST8 NDM-5 producer, and ST45 NDM-1 producer were commonly present in carbapenem-resistant K. pneumoniae (CRKPN), carbapenem-resistant E. coli (CRECO), and carbapenem-resistant E. cloacae (CRECL) isolates, respectively. In the "CRE infection" group, 70% (49/70) of strains were K. pneumoniae, with 21.4% E. cloacae (15/70) and 5.7% E. coli (4/70). The ST15 OXA-232 producer and ST48 NDM-5 producer were frequently observed in CRKPN isolates, while the majority of NDM-1-producing CRECL isolates were assigned as ST45. Phylogenetic analysis showed that partial CRE isolates from intestinal colonization and nosocomial infection were closely related, especially for ST11 KPC-2-producing CRKPN and ST45 NDM-1-producing CRECL. Furthermore, plasmid typing demonstrated that IncF and IncFIB were the most prevalent plasmids in KPC-2 producers, while IncX3/IncX2 and ColE were widely spread in NDM producer and OXA-232 producer, respectively. Then, class 1 integron intergrase intI1 was positive in 74.0% (71/96) of the "CRE colonization" group and 52.9% (37/70) of the "CRE infection" group. Conclusion: This study revealed that CRE strains from intestinal colonization and nosocomial infection showed a partial correlation in the prevalence of CRE, especially for ST11 KPC-2-producing CRKPN and ST45 NDM-1-producing CRECL. Therefore, before admission, long-term active screening of rectal colonization of CRE isolates should be emphasized.


Assuntos
Carbapenêmicos , Infecção Hospitalar , Criança , Humanos , Carbapenêmicos/farmacologia , Estudos Retrospectivos , Escherichia coli/genética , Antibacterianos/farmacologia , Infecção Hospitalar/epidemiologia , Prevalência , Filogenia , Klebsiella pneumoniae/genética
20.
Pathogens ; 12(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37242389

RESUMO

Droplet digital PCR (ddPCR) recently has been shown to be a potential diagnostic tool for adults with bloodstream infections (BSIs); however, its application in children remains obscure. In this study, 76 blood samples of children with suspected BSIs were synchronously detected by traditional blood cultures (BCs) and ddPCRs. Our team validated the diagnostic performance of ddPCR including sensitivity, specificity, and positive and negative predictive values. The 76 pediatric patients from the hematology department (67.1%), the pediatric intensive care unit (PICU, 27.6%), and other departments (5.2%) were enrolled. The positive rate of ddPCR results was 47.9%, whereas that for BC was 6.6%. In addition, the time consumption of ddPCR was shorter, only for 4.7 ± 0.9 h, in comparison with the detection timing of BC (76.7 ± 10.4 h, p < 0.01). The levels of agreement and disagreement between BC and ddPCR were 96.1% and 4.2%, and the negative agreement reached 95.6%. The sensitivity of ddPCR was 100%, with corresponding specificities ranging from 95.3 to 100.0%. In addition, a total of nine viruses were identified by ddPCR. In China, the multiplexed ddPCR first could be a tool for the rapid and accurate diagnosis of children with suspected BSIs and can be an early indicator of the possibility of viraemia in children with immunosuppression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA