Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Sci ; 30(1): 85, 2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37805581

RESUMO

Mammalian cells release a wealth of materials to their surroundings. Emerging data suggest these materials can even be mitochondria with perturbed morphology and aberrant function. These dysfunctional mitochondria are removed by migrating cells through membrane shedding. Neuronal cells, cardiomyocytes, and adipocytes send dysfunctional mitochondria into the extracellular space for nearby cells to degrade. Various studies also indicate that there is an interplay between intracellular mitochondrial degradation pathways and mitochondrial release in handling dysfunctional mitochondria. These observations, in aggregate, suggest that extracellular release plays a role in quality-controlling mammalian mitochondria. Future studies will help delineate the various types of molecular machinery mammalian cells use to release dysfunctional mitochondria. Through the studies, we will better understand how mammalian cells choose between intracellular degradation and extracellular release for the quality control of mitochondria.


Assuntos
Autofagia , Mitocôndrias , Animais , Autofagia/fisiologia , Mitocôndrias/fisiologia , Mitofagia/fisiologia , Miócitos Cardíacos/metabolismo , Mamíferos , Controle de Qualidade
2.
Biochem J ; 478(12): 2321-2337, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34076705

RESUMO

LMBD1 was previously demonstrated to regulate the endocytosis of insulin receptor on the cell surface and to mediate the export of cobalamin from the lysosomes to the cytosol, but little is known about its function in mitosis. In this study, interactome analysis data indicate that LMBD1 is involved in cytoskeleton regulation. Both immunoprecipitation and GST pulldown assays demonstrated the association of LMBD1 with tubulin. Immunofluorescence staining also showed the colocalization of LMBD1 with microtubule in both interphase and mitotic cells. LMBD1 specifically accelerates microtubule assembly dynamics in vitro and antagonizes the microtubule-disruptive effect of vinblastine. In addition, LMBRD1-knockdown impairs mitotic spindle formation, inhibits tubulin polymerization, and diminishes the mitosis-associated tubulin acetylation. The reduced acetylation can be reversed by ectopic expression of LMBD1 protein. These results suggest that LMBD1 protein stabilizes microtubule intermediates. Furthermore, embryonic fibroblasts derived from Lmbrd1 heterozygous knockout mice showed abnormality in microtubule formation, mitosis, and cell growth. Taken together, LMBD1 plays a pivotal role in regulating microtubule assembly that is essential for the process of cell mitosis.


Assuntos
Citoesqueleto/fisiologia , Microtúbulos/fisiologia , Mitose , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Transporte Nucleocitoplasmático/fisiologia , Tubulina (Proteína)/química , Animais , Ciclo Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Transporte Nucleocitoplasmático/genética , Domínios e Motivos de Interação entre Proteínas , Fuso Acromático/fisiologia
3.
J Formos Med Assoc ; 117(6): 471-479, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28549591

RESUMO

BACKGROUND/PURPOSE: LMBD1 protein, a type IV-B plasma membrane protein possessing nine putative trans-membrane domains, was previously demonstrated at cellular level to play a critical part in the signaling cascade of insulin receptor through its involvement in regulating clathrin-mediated endocytosis. However, at physiological level, the significance of LMBD1 protein in cardiac development remains unclear. METHODS: To understand the role of Lmbrd1 gene involved in the cardiac function, heterozygous knockout mice were used as an animal model system. The pathological outcomes were analyzed by micro-positron emission tomography, ECG acquisition, cardiac ultrasound, and immunohistochemistry. RESULTS: By studying the heterozygous knockout of Lmbrd1 (Lmbrd1+/-), we discovered that lack of Lmbrd1 not only resulted in the increase of cardiac-glucose uptake, pathological consequences were also observed. Here, we have distinguished that Lmbrd1+/- is sufficient in causing cardiac diseases through a pathway independent of the recessive vitamin B12 cblF cobalamin transport defect. Lmbrd1+/- mice exhibited an increase in myocardial glucose uptake and insulin receptor signaling that is insensitive to the administration of additional insulin. Pathological symptoms such as cardiac hypertrophy, ventricular tissue fibrosis, along with the increase of heart rate and cardiac muscle contractility were observed. As Lmbrd1+/- mice aged, the decrease in ejection fraction and fraction shortening showed signs of ventricular function deterioration. CONCLUSION: The results suggested that Lmbrd1 gene not only plays a significant role in mediating the energy homeostasis in cardiac tissue, it may also be a key factor in the regulation of cardiac function in mice.


Assuntos
Cardiomegalia/genética , Miócitos Cardíacos/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Receptor de Insulina/metabolismo , Alelos , Animais , Cardiomegalia/diagnóstico por imagem , Modelos Animais de Doenças , Ecocardiografia , Masculino , Camundongos , Camundongos Knockout , Tomografia por Emissão de Pósitrons , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA