Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Membr Biol ; 256(4-6): 443-458, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37955797

RESUMO

Vigna radiata H+-translocating pyrophosphatases (VrH+-PPases, EC 3.6.1.1) are present in various endomembranes of plants, bacteria, archaea, and certain protozoa. They transport H+ into the lumen by hydrolyzing pyrophosphate, which is a by-product of many essential anabolic reactions. Although the crystal structure of H+-PPases has been elucidated, the H+ translocation mechanism of H+-PPases in the solution state remains unclear. In this study, we used hydrogen-deuterium exchange (HDX) coupled with mass spectrometry (MS) to investigate the dynamics of H+-PPases between the previously proposed R state (resting state, Apo form), I state (intermediate state, bound to a substrate analog), and T state (transient state, bound to inorganic phosphate). When hydrogen was replaced by proteins in deuterium oxide solution, the backbone hydrogen atoms, which were exchanged with deuterium, were identified through MS. Accordingly, we used deuterium uptake to examine the structural dynamics and conformational changes of H+-PPases in solution. In the highly conserved substrate binding and proton exit regions, HDX-MS revealed the existence of a compact conformation with deuterium exchange when H+-PPases were bound with a substrate analog and product. Thus, a novel working model was developed to elucidate the in situ catalytic mechanism of pyrophosphate hydrolysis and proton transport. In this model, a proton is released in the I state, and the TM5 inner wall serves as a proton piston.


Assuntos
Pirofosfatase Inorgânica , Vigna , Pirofosfatase Inorgânica/metabolismo , Vigna/metabolismo , Prótons , Deutério/metabolismo , Difosfatos/metabolismo , Medição da Troca de Deutério , Hidrogênio/metabolismo , Espectrometria de Massas
2.
Bioinformatics ; 36(2): 449-461, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31347658

RESUMO

MOTIVATION: Quaternary structure determination for transmembrane/soluble proteins requires a reliable computational protocol that leverages observed distance restraints and/or cyclic symmetry (Cn symmetry) found in most homo-oligomeric transmembrane proteins. RESULTS: We survey 118 X-ray crystallographically solved structures of homo-oligomeric transmembrane proteins (HoTPs) and find that ∼97% are Cn symmetric. Given the prevalence of Cn symmetric HoTPs and the benefits of incorporating geometry restraints in aiding quaternary structure determination, we introduce two new filters, the distance-restraints (DR) and the Symmetry-Imposed Packing (SIP) filters. SIP relies on a new method that can rebuild the closest ideal Cn symmetric complex from docking poses containing a homo-dimer without prior knowledge of the number (n) of monomers. Using only the geometrical filter, SIP, near-native poses of 7 HoTPs in their monomeric states can be correctly identified in the top-10 for 71% of all cases, or 29% among 31 HoTP structures obtained through homology modeling, while ZDOCK alone returns 14 and 3%, respectively. When the n is given, the optional n-mer filter is applied with SIP and returns the near-native poses for 76% of the test set within the top-10, outperforming M-ZDOCK's 55% and Sam's 47%. While applying only SIP to three HoTPs that comes with distance restraints, we found the near-native poses were ranked 1st, 1st and 10th among 54 000 possible decoys. The results are further improved to 1st, 1st and 3rd when both DR and SIP filters are used. By applying only DR, a soluble system with distance restraints is recovered at the 1st-ranked pose. AVAILABILITY AND IMPLEMENTATION: https://github.com/capslockwizard/drsip. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Modelos Químicos , Modelos Moleculares , Conformação Proteica
3.
Medicina (Kaunas) ; 56(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227992

RESUMO

Background and objectives: Cancer stem cells (CSCs) are obstacles to cancer therapy due to their therapeutic resistance, ability to initiate neoplasia, and roles in tumor relapse and metastasis. Efforts have been made to cure CSCs, such as the use of differentiation therapy, which induces cancer stem-like cells to undergo differentiation and decrease their tumorigenicity. Interleukin 6 (IL-6) upregulates the expression of glial fibrillary acidic protein (GFAP) in C6 glioma cells, indicating that it is able to induce the differentiation of these cells. The C6 glioma cell line forms a high percentage of cancer stem-like cells, leading us to speculate whether IL-6 signaling could modulate the differentiation of tumorigenic C6 glioma cells. However, we observed that IL-6 alone could not efficiently induce the differentiation of these cells. Therefore, different IL-6 signaling elicitors, including IL-6 alone, a combination of IL-6 and soluble IL-6 receptor (IL-6/sIL-6R), and tumor necrosis factor-α (TNF-α) plus IL-6/sIL-6R (TNF-α/IL-6/sIL-6R), were evaluated for their potential use in differentiation therapy. Materials and Methods: The potential of IL-6 signaling elicitors in differentiation therapy were examined by assessing changes in biomarker levels, the rate of cell proliferation, and tumorigenicity, respectively. Results: Enhanced IL-6 signaling could effectively induce C6 glioma cell differentiation, as determined by observed variations in the expression of differentiation, cell cycle, and stem cell biomarkers. Additionally, the total cell population and the tumorigenicity of glioma cells were all considerably reduced after TNF-α/IL-6/sIL-6R treatment. Conclusions: Our findings provide evidence that enhanced IL-6 signaling can efficiently promote tumorigenic C6 glioma cells to undergo differentiation.


Assuntos
Glioma , Interleucina-6 , Diferenciação Celular , Humanos , Recidiva Local de Neoplasia , Fator de Necrose Tumoral alfa
4.
J Membr Biol ; 252(2-3): 183-194, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31053903

RESUMO

Auxin regulates diverse processes involved in plant growth and development. AUX1 is the first identified and most widely investigated auxin importer, and plays an important role in root gravitropism and the development of lateral root and root hair. However, the regulation of auxin transport by AUX1 is still not well understood. In this study, we examined the effect of metal ions on AUX1 transport function and found that the activity could be specifically stimulated four times by K+. Further experiments revealed the preference of KF on the enhancement of transport activity of AUX1 over KCl, KBr, and KI. In addition, the interaction between K+ and AUX1 confers AUX1 more resistant to thermal stress but more vulnerable to proteolysis. Conventional chemical modification indicated that the extracellular acidic amino acids of AUX1 play a key role in the K+ stimulation. Site-specific mutagenesis showed that the replacement of Asp166, Asp293, and Asp312 of AUX1 to alanine deteriorated the K+-stimulated auxin transport. By contrast, when these residues were mutated to glutamate, lysine, or asparagine, only the D312E variant restored the IAA transport activity to the wild-type level. It is thus convinced that D312 is presumably the most promising residue for the K+ stimulation on AUX1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Brometos/farmacologia , Fluoretos/farmacologia , Ácidos Indolacéticos/metabolismo , Cloreto de Potássio/farmacologia , Compostos de Potássio/farmacologia , Iodeto de Potássio/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Brometos/química , Fluoretos/química , Expressão Gênica , Temperatura Alta , Ácidos Indolacéticos/farmacologia , Mutagênese Sítio-Dirigida , Cloreto de Potássio/química , Compostos de Potássio/química , Iodeto de Potássio/química , Estabilidade Proteica , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transdução de Sinais
5.
J Exp Bot ; 70(19): 5407-5421, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31173088

RESUMO

Bacterial wilt caused by Ralstonia solanacearum is a devastating disease affecting hundreds of plant species, yet the host factors remain poorly characterized. The leucine-rich repeat receptor-like kinase gene AhRLK1, characterized as CLAVATA1, was found to be up-regulated in peanut upon inoculation with R. solanacearum. The AhRLK1 protein was localized in the plasma membrane and cell wall. qPCR results showed AhRLK1 was induced in a susceptible variety but little changed in a resistant cultivar after inoculated with R. solanacearum. Hormones such as salicylic acid, abscisic acid, methyl jasmonate, and ethephon induced AhRLK1 expression. In contrast, AhRLK1 expression was down-regulated under cold and drought treatments. Transient overexpression of AhRLK1 led to a hypersensitive response (HR) in Nicotiana benthamiana. Furthermore, AhRLK1 overexpression in tobacco significantly increased the resistance to R. solanacearum. Besides, the transcripts of most representative defense responsive genes in HR and hormone signal pathways were significantly increased in the transgenic lines. EDS1 and PAD4 in the R gene signaling pathway were also up-regulated, but NDR1 was down-regulated. Accordingly, AhRLK1 may increase the defense response to R. solanacearum via HR and hormone defense signaling, in particular through the EDS1 pathway of R gene signaling. These results provide a new understanding of the CLAVATA1 function and will contribute to genetic enhancement of peanut.


Assuntos
Arachis/genética , Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Ralstonia solanacearum/fisiologia , Arachis/metabolismo , Resistência à Doença , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Nicotiana/genética
6.
J Membr Biol ; 251(2): 263-276, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29453559

RESUMO

Plant vacuolar H+-transporting inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a crucial enzyme that exists on the tonoplast to maintain pH homeostasis across the vacuolar membrane. This enzyme generates proton gradient between cytosol and vacuolar lumen by hydrolysis of a metabolic byproduct, pyrophosphate (PP i ). The regulation of V-PPase at protein level has drawn attentions of many workers for decades, but its mechanism is still unclear. In this work, we show that AVP1, the V-PPase from Arabidopsis thaliana, is a target protein for regulatory 14-3-3 proteins at the vacuolar membrane, and all twelve 14-3-3 isoforms were analyzed for their association with AVP1. In the presence of 14-3-3ν, -µ, -ο, and -ι, both enzymatic activities and its associated proton pumping of AVP1 were increased. Among these 14-3-3 proteins, 14-3-3 µ shows the highest stimulation on coupling efficiency. Furthermore, 14-3-3ν, -µ, -ο, and -ι exerted protection of AVP1 against the inhibition of suicidal substrate PP i at high concentration. Moreover, the thermal profile revealed the presence of 14-3-3ο improves the structural stability of AVP1 against high temperature deterioration. Additionally, the 14-3-3 proteins mitigate the inhibition of Na+ to AVP1. Besides, the binding sites/motifs of AVP1 were identified for each 14-3-3 protein. Taken together, a working model was proposed to elucidate the association of 14-3-3 proteins with AVP1 for stimulation of its enzymatic activity.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pirofosfatase Inorgânica/metabolismo , Proteínas 14-3-3/genética , Proteínas de Arabidopsis/genética , Temperatura Alta , Pirofosfatase Inorgânica/genética , Sódio/metabolismo
7.
Nature ; 484(7394): 399-403, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22456709

RESUMO

H(+)-translocating pyrophosphatases (H(+)-PPases) are active proton transporters that establish a proton gradient across the endomembrane by means of pyrophosphate (PP(i)) hydrolysis. H(+)-PPases are found primarily as homodimers in the vacuolar membrane of plants and the plasma membrane of several protozoa and prokaryotes. The three-dimensional structure and detailed mechanisms underlying the enzymatic and proton translocation reactions of H(+)-PPases are unclear. Here we report the crystal structure of a Vigna radiata H(+)-PPase (VrH(+)-PPase) in complex with a non-hydrolysable substrate analogue, imidodiphosphate (IDP), at 2.35 Å resolution. Each VrH(+)-PPase subunit consists of an integral membrane domain formed by 16 transmembrane helices. IDP is bound in the cytosolic region of each subunit and trapped by numerous charged residues and five Mg(2+) ions. A previously undescribed proton translocation pathway is formed by six core transmembrane helices. Proton pumping can be initialized by PP(i) hydrolysis, and H(+) is then transported into the vacuolar lumen through a pathway consisting of Arg 242, Asp 294, Lys 742 and Glu 301. We propose a working model of the mechanism for the coupling between proton pumping and PP(i) hydrolysis by H(+)-PPases.


Assuntos
Fabaceae/enzimologia , Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/metabolismo , Proteínas de Membrana/química , Sítios de Ligação , Membrana Celular/metabolismo , Cristalografia por Raios X , Citosol/metabolismo , Difosfonatos/química , Difosfonatos/metabolismo , Hidrólise , Magnésio/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Prótons , Eletricidade Estática , Vacúolos/metabolismo
8.
J Biol Chem ; 290(2): 1197-209, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25451931

RESUMO

Single molecule atomic force microscopy (smAFM) was employed to unfold transmembrane domain interactions of a unique vacuolar H(+)-pyrophosphatase (EC 3.6.1.1) from Vigna radiata. H(+)-Pyrophosphatase is a membrane-embedded homodimeric protein containing a single type of polypeptide and links PPi hydrolysis to proton translocation. Each subunit consists of 16 transmembrane domains with both ends facing the lumen side. In this investigation, H(+)-pyrophosphatase was reconstituted into the lipid bilayer in the same orientation for efficient fishing out of the membrane by smAFM. The reconstituted H(+)-pyrophosphatase in the lipid bilayer showed an authentically dimeric structure, and the size of each monomer was ∼4 nm in length, ∼2 nm in width, and ∼1 nm in protrusion height. Upon extracting the H(+)-pyrophosphatase out of the membrane, force-distance curves containing 10 peaks were obtained and assigned to distinct domains. In the presence of pyrophosphate, phosphate, and imidodiphosphate, the numbers of interaction curves were altered to 7, 8, and 10, respectively, concomitantly with significant modification in force strength. The substrate-binding residues were further replaced to verify these domain changes upon substrate binding. A working model is accordingly proposed to show the interactions between transmembrane domains of H(+)-pyrophosphatase in the presence and absence of substrate and its analog.


Assuntos
Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/ultraestrutura , Transporte de Íons , Vacúolos/enzimologia , Fabaceae/química , Fabaceae/enzimologia , Hidrólise , Pirofosfatase Inorgânica/metabolismo , Cinética , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Estrutura Terciária de Proteína , Prótons , Especificidade por Substrato
9.
J Biol Chem ; 288(17): 12335-44, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23486465

RESUMO

Leptospirosis is the most widespread zoonosis caused by the pathogenic Leptospira worldwide. LipL32, a 32-kDa lipoprotein, is the most abundant protein on the outer membrane of Leptospira and has an atypical poly(Asp) motif ((161)DDDDDGDD(168)). The x-ray crystallographic structure of LipL32 revealed that the calcium-binding cluster of LipL32 includes several essential residues Asp(132), Thr(133), Asp(164), Asp(165), and Tyr(178). The goals of this study were to determine possible roles of the Ca(2+)-binding cluster for the interaction of LipL32 and Toll-like receptor 2 (TLR2) in induced inflammatory responses of human kidney cells. Site-directed mutagenesis was employed to individually mutate Ca(2+)-binding residues of LipL32 to Ala, and their effects subsequently were observed. These mutations abolished primarily the structural integrity of the calcium-binding cluster in LipL32. The binding assay and atomic force microscopy analysis further demonstrated the decreased binding capability of LipL32 mutants to TLR2. Inflammatory responses induced by LipL32 variants, as determined by TLR2 pathway intermediates hCXCL8/IL-8, hCCL2/MCP-1, hMMP7, and hTNF-α, were also lessened. In conclusion, the calcium-binding cluster of LipL32 plays essential roles in presumably sustaining LipL32 conformation for its proper association with TLR2 to elicit inflammatory responses in human renal cells.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Rim/metabolismo , Leptospira/metabolismo , Leptospirose/metabolismo , Lipoproteínas/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Linhagem Celular , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-8/biossíntese , Interleucina-8/genética , Rim/patologia , Leptospira/genética , Leptospirose/genética , Leptospirose/patologia , Lipoproteínas/genética , Metaloproteinase 7 da Matriz/biossíntese , Metaloproteinase 7 da Matriz/genética , Mutagênese Sítio-Dirigida , Receptor 2 Toll-Like/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
10.
J Biol Chem ; 288(27): 19312-20, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23720778

RESUMO

Homodimeric proton-translocating pyrophosphatase (H(+)-PPase; EC 3.6.1.1) is indispensable for many organisms in maintaining organellar pH homeostasis. This unique proton pump couples the hydrolysis of PPi to proton translocation across the membrane. H(+)-PPase consists of 14-16 relatively hydrophobic transmembrane domains presumably for proton translocation and hydrophilic loops primarily embedding a catalytic site. Several highly conserved polar residues located at or near the entrance of the transport pathway in H(+)-PPase are essential for proton pumping activity. In this investigation single molecule FRET was employed to dissect the action at the pathway entrance in homodimeric Clostridium tetani H(+)-PPase upon ligand binding. The presence of the substrate analog, imidodiphosphate mediated two sites at the pathway entrance moving toward each other. Moreover, single molecule FRET analyses after the mutation at the first proton-carrying residue (Arg-169) demonstrated that conformational changes at the entrance are conceivably essential for the initial step of H(+)-PPase proton translocation. A working model is accordingly proposed to illustrate the squeeze at the entrance of the transport pathway in H(+)-PPase upon substrate binding.


Assuntos
Clostridium tetani/enzimologia , Pirofosfatase Inorgânica/química , Multimerização Proteica/fisiologia , Prótons , Transferência Ressonante de Energia de Fluorescência/métodos , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Transporte de Íons/fisiologia , Ligação Proteica/fisiologia
11.
J Bioenerg Biomembr ; 46(2): 127-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24121937

RESUMO

Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) maintains the cytoplasmic pH homeostasis of many bacteria and higher plants by coupling pyrophosphate (PPi) hydrolysis and proton translocation. H+-PPase accommodates several essential motifs involved in the catalytic mechanism, including the PPi binding motif and Acidic I and II motifs. In this study, 3 intrinsic tryptophan residues, Trp-75, Trp-365, and Trp-602, in H+-PPase from Clostridium tetani were used as internal probes to monitor the local conformational state of the periplasm domain, transmembrane region, and cytoplasmic domain, respectively. Upon binding of the substrate analog Mg-imidodiphosphate (Mg-IDP), local structural changes prevented the modification of tryptophan residues by N-bromosuccinimide (NBS), especially at Trp-602. Following Mg-Pi binding, Trp-75 and Trp-365, but not Trp-602, were slightly protected from structural modifications by NBS. These results reveal the conformation of H+-PPase is distinct in the presence of different ligands. Moreover, analyses of the Stern-Volmer relationship and steady-state fluorescence anisotropy also indicate that the local structure around Trp-602 is more exposed to solvent and varied under different environments. In addition, Trp-602 was identified to be a crucial residue in the H+-PPase that may potentially be involved in stabilizing the structure of the catalytic region by site-directed mutagenesis analysis.


Assuntos
Clostridium tetani/enzimologia , Pirofosfatase Inorgânica/química , Triptofano/química , Fluorescência , Mutagênese Sítio-Dirigida , Prótons
12.
J Membr Biol ; 246(12): 959-66, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24121627

RESUMO

H⁺-translocating pyrophosphatase (H⁺-PPase, EC 3.6.1.1) plays an important role in acidifying vacuoles by transporting protons across membranes at the expense of pyrophosphate (PP(i)) hydrolysis. Vigna radiata H⁺-PPase (VrH⁺-PPase) contains 16 transmembrane helices (TMs). The hydrophobicity of TM3 is relatively lower than that of most other TMs, and the amino acids in this TM are highly conserved in plants. Furthermore, TM5 and -6, which are the core TMs involving in H⁺-PPase functions, are near TM3. It is thus proposed that TM3 is associated with H⁺-PPase activity. To address this possibility, site-directed mutagenesis was applied in this investigation to determine the role of TM3 in VrH⁺-PPase. Upon alanine/serine substitution, T138 and S142, whose side chains face toward the center TMs, were found to be involved in efficient proton transport. G149/S153 and G160/A164 pairs at the crucial termini of the two GxxxG-like motifs are indispensable in maintaining enzymatic activities and conformational stability. Moreover, stability in the vicinity surrounding G149 is pivotal for efficient expression. S153, M161 and A164 are critical for the K⁺-mediated stimulation of H⁺-PPase. Taken together, our results demonstrate that TM3 plays essential roles in PP(i) hydrolysis, proton transport, expression, and K⁺ stimulation of H⁺-PPase.


Assuntos
Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/metabolismo , Proteínas de Plantas , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Substituição de Aminoácidos , Ativação Enzimática , Expressão Gênica , Hidrólise , Pirofosfatase Inorgânica/genética , Íons/metabolismo , Leucina/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Alinhamento de Sequência
13.
J Biol Chem ; 286(14): 11970-6, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21292767

RESUMO

H+-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) drives proton transport against an electrochemical potential gradient by hydrolyzing pyrophosphate (PPi) and is found in various endomembranes of higher plants, bacteria, and some protists. H+-PPase contains seven highly conserved lysines. We examined the functional roles of these lysines, which are, for the most part, found in the cytosolic regions of mung bean H+-PPase by site-directed mutagenesis. Construction of mutants that each had a cytosolic and highly conserved lysine substituted with an alanine resulted in dramatic drops in the PPi hydrolytic activity. The effects caused by ions on the activities of WT and mutant H+-PPases suggest that Lys-730 may be in close proximity to the Mg2+-binding site, and the great resistance of the K694A and K695A mutants to fluoride inhibition suggests that these lysines are present in the active site. The modifier fluorescein 5'-isothiocyanate (FITC) labeled a lysine at the H+-PPase active site but did not inhibit the hydrolytic activities of K250A, K250N, K250T, and K250S, which suggested that Lys-250 is essential for substrate binding and may be involved in proton translocation. Analysis of tryptic digests indicated that Lys-711 and Lys-717 help maintain the conformation of the active site. Proteolytic evidence also demonstrated that Lys-250 is the primary target of trypsin and confirmed its crucial role in H+-PPase hydrolysis.


Assuntos
Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/metabolismo , Vacúolos/enzimologia , Western Blotting , Eletroforese em Gel de Poliacrilamida , Pirofosfatase Inorgânica/genética , Lisina/genética , Lisina/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Biochim Biophys Acta ; 1807(1): 59-67, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20937245

RESUMO

Vacuolar H(+)-pyrophosphatase (V-PPase; EC 3.6.1.1) plays a significant role in the maintenance of the pH in cytoplasm and vacuoles via proton translocation from the cytosol to the vacuolar lumen at the expense of PP(i) hydrolysis. The topology of V-PPase as predicted by TopPred II suggests that the catalytic site is putatively located in loop e and exposed to the cytosol. The adjacent transmembrane domain 6 (TM6) is highly conserved and believed to participate in the catalytic function and conformational stability of V-PPase. In this study, alanine-scanning mutagenesis along TM6 of the mung bean V-PPase was carried out to identify its structural and functional role. Mutants Y299A, A306S and L317A exhibited gross impairment in both PP(i) hydrolysis and proton translocation. Meanwhile, mutations at L307 and N318 completely abolished the targeting of the enzyme, causing broad cytosolic localization and implicating a possible role of these residues in protein translocation. The location of these amino acid residues was on the same side of the helix wheel, suggesting their involvement in maintaining the stability of enzyme conformation. G297A, E301A and A305S mutants showed declines in proton translocation but not in PP(i) hydrolysis, consequently resulting in decreases in the coupling efficiency. These amino acid residues cluster at one face of the helix wheel, indicating their direct/indirect participation in proton translocation. Taken together, these data indicate that TM6 is crucial to vacuolar H(+)-pyrophosphatase, probably mediating protein targeting, proton transport, and the maintenance of enzyme structure.


Assuntos
Fabaceae/enzimologia , Membranas Intracelulares/enzimologia , Pirofosfatases/metabolismo , Vacúolos/enzimologia , Alanina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Domínio Catalítico , Primers do DNA , Estabilidade Enzimática , Homeostase , Concentração de Íons de Hidrogênio , Cinética , Mutagênese , Reação em Cadeia da Polimerase , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
15.
Development ; 136(18): 3099-107, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19675132

RESUMO

Abl tyrosine kinase (Abl) regulates axon guidance by modulating actin dynamics. Abelson interacting protein (Abi), originally identified as a kinase substrate of Abl, also plays a key role in actin dynamics, yet its role with respect to Abl in the developing nervous system remains unclear. Here we show that mutations in abi disrupt axonal patterning in the developing Drosophila central nervous system (CNS). However, reducing abi gene dosage by half substantially rescues Abl mutant phenotypes in pupal lethality, axonal guidance defects and locomotion deficits. Moreover, we show that mutations in Abl increase synaptic growth and spontaneous synaptic transmission frequency at the neuromuscular junction. Double heterozygosity for abi and enabled (ena) also suppresses the synaptic overgrowth phenotypes of Abl mutants, suggesting that Abi acts cooperatively with Ena to antagonize Abl function in synaptogenesis. Intriguingly, overexpressing Abi or Ena alone in cultured cells dramatically redistributed peripheral F-actin to the cytoplasm, with aggregates colocalizing with Abi and/or Ena, and resulted in a reduction in neurite extension. However, co-expressing Abl with Abi or Ena redistributed cytoplasmic F-actin back to the cell periphery and restored bipolar cell morphology. These data suggest that abi and Abl have an antagonistic interaction in Drosophila axonogenesis and synaptogenesis, which possibly occurs through the modulation of F-actin reorganization.


Assuntos
Axônios/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Morfogênese/fisiologia , Neurogênese/fisiologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Sinapses/fisiologia , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/ultraestrutura , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurotransmissores/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas c-abl/genética , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia
16.
J Biol Chem ; 285(31): 23655-64, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20511234

RESUMO

Homodimeric H(+)-pyrophosphatase (H(+)-PPase; EC 3.6.1.1) is a unique enzyme playing a pivotal physiological role in pH homeostasis of organisms. This novel H(+)-PPase supplies energy at the expense of hydrolyzing metabolic byproduct, pyrophosphate (PP(i)), for H(+) translocation across membrane. The functional unit for the translocation is considered to be a homodimer. Its putative active site on each subunit consists of PP(i) binding motif, Acidic I and II motifs, and several essential residues. In this investigation structural mapping of these vital regions was primarily determined utilizing single molecule fluorescence resonance energy transfer. Distances between two C termini and also two N termini on homodimeric subunits of H(+)-PPase are 49.3 + or - 4.0 and 67.2 + or - 5.7 A, respectively. Furthermore, putative PP(i) binding motifs on individual subunits are found to be relatively far away from each other (70.8 + or - 4.8 A), whereas binding of potassium and substrate analogue led them to closer proximity. Moreover, substrate analogue but not potassium elicits significant distance variations between two Acidic I motifs and two His-622 residues on homodimeric subunits. Taken together, this study provides the first quantitative measurements of distances between various essential motifs, residues, and putative active sites on homodimeric subunits of H(+)-PPase. A working model is accordingly proposed elucidating the distance variations of dimeric H(+)-PPase upon substrate binding.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/fisiologia , Pirofosfatases/química , Motivos de Aminoácidos , Domínio Catalítico , Clostridium tetani/enzimologia , Dimerização , Escherichia coli/enzimologia , Ligantes , Microssomos/metabolismo , Mutação , Sinais Direcionadores de Proteínas , Transporte Proteico , Espectrometria de Fluorescência
17.
Langmuir ; 27(19): 11930-42, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21859109

RESUMO

We study the indentation of a free-standing lipid membrane suspended over a nanopore on a hydrophobic substrate by means of molecular dynamics simulations. We find that in the course of indentation the membrane bends at the point of contact and the fringes of the membrane glide downward intermittently along the pore edges and stop gliding when the fringes reach the edge bottoms. The bending continues afterward, and the large strain eventually induces a phase transition in the membrane, transformed from a bilayered structure to an interdigitated structure. The membrane is finally ruptured when the indentation goes deep enough. Several local physical quantities in the pore regions are calculated, which include the tilt angle of lipid molecules, the nematic order, the included angle, and the distance between neighboring lipids. The variations of these quantities reveal many detailed, not-yet-specified local structural transitions of lipid molecules under indentation. The force-indentation curve is also studied and discussed. The results make a connection between the microscopic structure and the macroscopic properties and provide deep insight into the understanding of the stability of a lipid membrane spanning over nanopore.


Assuntos
Membranas Artificiais , Simulação de Dinâmica Molecular , Nanoporos , Interações Hidrofóbicas e Hidrofílicas
18.
Biochemistry ; 49(26): 5408-17, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20513152

RESUMO

Leptopirosis is a renal disease caused by pathogenic Leptospira that primarily infects the renal proximal tubules, consequently resulting in severe tubular injuries and malfunctions. The protein extracted from the outer membrane of this pathogenic strain contains a major component of a 32 kDa lipoprotein (LipL32), which is absent in the counter membrane of nonpathogenic strains and has been identified as a crucial factor for host cell infection. Previous studies showed that LipL32 induced inflammatory responses and interacted with the extracellular matrix (ECM) of the host cell. However, the exact relationship between LipL32-mediated inflammatory responses and ECM binding is still unknown. In this study, an atomic force microscope with its tip modified by purified LipL32 was used to assess the interaction between LipL32 and cell surface receptors. Furthermore, an antibody neutralization technique was employed to identify Toll-like receptor 2 (TLR2) but not TLR4 as the major target of LipL32 attack. The interaction force between LipL32 and TLR2 was measured as approximately 59.5 +/- 8.7 pN, concurring with the theoretical value for a single-pair molecular interaction. Moreover, transformation of a TLR deficient cell line with human TLR2 brought the interaction force from the basal level to approximately 60.4 +/- 11.5 pN, confirming unambiguously TLR2 as counter receptor for LipL32. The stimulation of CXCL8/IL-8 expression by full-length LipL32 as compared to that without the N-terminal signal peptide domain suggests a significant role of the signal peptide of the protein in the inflammatory responses. This study provides direct evidence that LipL32 binds to TLR2, but not TLR4, on the cell surface, and a possible mechanism for the virulence of leptospirosis is accordingly proposed.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Rim/microbiologia , Leptospira/patogenicidade , Lipoproteínas/metabolismo , Receptor 2 Toll-Like/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Humanos , Inflamação , Rim/patologia , Leptospira/química , Leptospira/metabolismo , Leptospirose/etiologia , Leptospirose/microbiologia , Lipoproteínas/química , Microscopia de Força Atômica/métodos , Ligação Proteica , Sinais Direcionadores de Proteínas , Receptor 4 Toll-Like , Virulência
19.
Plant Mol Biol ; 74(4-5): 453-66, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20844935

RESUMO

The Ku heterodimer, a DNA repair protein complex consisting of 70- and 80-kDa subunits, is involved in the non-homologous end-joining (NHEJ) pathway. Plants are thought to use the NHEJ pathway primarily for the repair of DNA double-strand breaks (DSBs). The Ku70/80 protein has been identified in many plants and been shown to possess several similar functions to its counter protein complex in mammals. In the present study, ovate family protein 1 (AtOFP1) was demonstrated to be a plant Ku-interacting protein by yeast two-hybrid screening and the GST pull-down assay. Truncation analysis revealed that the C-terminal domain of AtKu70 contains interacting sites for AtOFP1. The electrophoretic mobility shift assay (EMSA) indicated that AtOFP1 is also a DNA binding protein with its binding domain at the N-terminus. In 3-week-old seedlings, expression of the AtOFP1 gene increased after exposure to DNA-damaging agents (such as methyl methanesulfonate (MMS) and menadione) in a time dependent manner. Seedlings lacking the AtOFP1 protein were more sensitive to MMS and menadione as compared with wild-type. Furthermore, similar to AtKu70(-/-) and AtKu80(-/-), the AtOFP1(-/-) mutant showed relatively lower NHEJ activity in vivo. Taken together, these results suggest that AtOFP1 may play a role in DNA repair through the NHEJ pathway accompanying with the AtKu protein.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Mutagênicos/farmacologia , Mapeamento de Interação de Proteínas , Proteínas Repressoras/química , Proteínas Repressoras/genética , Técnicas do Sistema de Duplo-Híbrido
20.
Biochim Biophys Acta ; 1779(6-7): 402-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18515112

RESUMO

Ku, a heterodimeric protein consisting of 70- and 80-kDa subunits, is involved in many cellular processes, such as DNA replication, cell cycle regulation and heat shock response. Moreover, the expression of Arabidopsis thaliana Ku genes (AtKu) is modulated by certain plant hormones through several signal transduction pathways. This study investigated how AtKu are regulated by heat stress. AtKu expression in 3-week-old young seedlings was down-regulated by heat stress in a time-dependent manner, as examined using real-time quantitative PCR, GUS reporter systems, and western blotting analysis. Additionally, the heat-induced repression of AtKu was mediated through the abscisic acid (ABA) biosynthetic pathway, as shown by the reversal of AtKu suppression in the ABA biosynthesis mutant, aba3, and by an increase in the ABA level as analyzed by reverse-phase high performance liquid chromatography. Heat stress-induced regulation of AtKu repression also involved ethylene signaling, DNA repair pathways, and fatty acid synthesis. Furthermore, AtKu expression was repressed in stems, rosette leaves, and cauline leaves in 4-5-week-old plants under heat stress, whereas it remained unchanged in roots and primary inflorescence, indicating that heat differentially modulated AtKu expression in distinct tissues of Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Genes de Plantas , Arabidopsis/metabolismo , Sequência de Bases , Primers do DNA/genética , DNA de Plantas/genética , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Mutação , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Sulfurtransferases/genética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA