Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Mol Cancer ; 22(1): 152, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689715

RESUMO

BACKGROUND: Among digestive tract tumours, pancreatic ductal adenocarcinoma (PDAC) shows the highest mortality trend. Moreover, although PDAC metastasis remains a leading cause of cancer-related deaths, the biological mechanism is poorly understood. Recent evidence demonstrates that circular RNAs (circRNAs) play important roles in PDAC progression. METHODS: Differentially expressed circRNAs in normal and PDAC tissues were screened via bioinformatics analysis. Sanger sequencing, RNase R and actinomycin D assays were performed to confirm the loop structure of circEIF3I. In vitro and in vivo functional experiments were conducted to assess the role of circEIF3I in PDAC. MS2-tagged RNA affinity purification, mass spectrometry, RNA immunoprecipitation, RNA pull-down assay, fluorescence in situ hybridization, immunofluorescence and RNA-protein interaction simulation and analysis were performed to identify circEIF3I-interacting proteins. The effects of circEIF3I on the interactions of SMAD3 with TGFßRI or AP2A1 were measured through co-immunoprecipitation and western blotting. RESULTS: A microarray data analysis showed that circEIF3I was highly expressed in PDAC cells and correlated with TNM stage and poor prognosis. Functional experiments in vitro and in vivo revealed that circEIF3I accelerated PDAC cells migration, invasion and metastasis by increasing MMPs expression and activity. Mechanistic research indicated that circEIF3I binds to the MH2 domain of SMAD3 and increases SMAD3 phosphorylation by strengthening the interactions between SMAD3 and TGFßRI on early endosomes. Moreover, AP2A1 binds with circEIF3I directly and promotes circEIF3I-bound SMAD3 recruitment to TGFßRI on early endosomes. Finally, we found that circEif3i exerts biological functions in mice similar to those of circEIF3I in humans PDAC. CONCLUSIONS: Our study reveals that circEIF3I promotes pancreatic cancer progression. circEIF3I is a molecular scaffold that interacts with SMAD3 and AP2A1 to form a ternary complex, that facilitates the recruitment of SMAD3 to early endosomes and then activates the TGF-ß signalling pathway. Hence, circEIF3I is a potential prognostic biomarker and therapeutic target in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/genética , Endossomos , Hibridização in Situ Fluorescente , Neoplasias Pancreáticas/genética , RNA Circular , Proteína Smad3/genética , Fator de Crescimento Transformador beta , Neoplasias Pancreáticas
2.
Cancer Sci ; 113(9): 2986-3001, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35534983

RESUMO

Emerging evidence has indicated that long noncoding RNAs (lncRNAs) are potential biomarkers and play crucial roles in cancer development. However, the functions and underlying mechanisms of lncRNA TPT1-AS1 in pancreatic ductal adenocarcinoma (PDAC) remain elusive. RNAseq data of PDAC tissues and normal tissues were analyzed, and lncRNAs which were associated with PDAC prognosis were identified. The clinical relevance of TPT1-AS1 for PDAC patients was explored, and the effects of TPT1-AS1 in PDAC progression were investigated in vitro and in vivo. LncRNA TPT1-AS1 was highly expressed in PDAC, and high TPT1-AS1 levels predicted a poor prognosis. Moreover, functional experiments revealed that TPT1-AS1 promoted pancreatic cancer cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) process in vitro and in vivo. Mechanistically, TPT1-AS1 functioned as an endogenous sponge for miR-30a-5p, which increased integrin ß3 (ITGB3) level in pancreatic cancer cells. Conversely, our data revealed that ITGB3 could activate the transcription factor signal transducer and activator of transcription 3 (STAT3), which in turn bound directly to the TPT1-AS1 promoter and affected the expression of TPT1-AS1, thus forming a positive feedback loop with TPT1-AS1. Taken together, our results uncovered a reciprocal loop of TPT1-AS1 and ITGB3 which contributed to pancreatic cancer growth and development, and indicated that TPT1-AS1 might serve as a novel potential diagnostic biomarker and therapeutic target for PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Retroalimentação , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina beta3/genética , Integrina beta3/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pancreáticas
3.
J Cell Physiol ; 234(12): 22623-22634, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31106426

RESUMO

Cystatin SN, a specific cysteine protease inhibitor, is thought to be involved in various malignant tumors. Therefore, we evaluated the role of cystatin SN in hepatocellular carcinoma (HCC). Notably, cystatin SN was elevated in tumorous samples and cells. Moreover, overexpression of cystatin SN was correlated with tumor diameter and TNM stage. Cox multivariate analysis displayed that cystatin SN was an independent prognosis indicator and that high cystatin SN level was associated with a dismal prognosis. Moreover, cystatin SN enhancement facilitated the proliferation, migratory, and invasive potential of Huh7 and HCCLM3 cells, whereas cystatin SN knockdown caused the opposite effect. Cystatin SN also modulated the epithelial-mesenchymal transition progression through the PI3K/AKT pathway. In vivo cystatin SN promoted HCCLM3 cell growth and metastasis in xenograft mice model. Thus, cystatin SN was involved in HCC progression and could be a latent target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Hepáticas/metabolismo , Cistatinas Salivares/metabolismo , Animais , Biomarcadores Tumorais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Experimentais , Fosfatidilinositol 3-Quinases , Prognóstico , Proteínas Proto-Oncogênicas c-akt , Cistatinas Salivares/genética , Regulação para Cima
4.
Pulm Pharmacol Ther ; 54: 77-86, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30605726

RESUMO

GYY4137, a slow-releasing hydrogen sulfide (H2S) donor, has been reported to exert anti-inflammatory activity and protect against sepsis. Heme oxygenase-1 (HO-1) is an important anti-inflammatory heat shock protein and plays a similar effect on sepsis. This study investigated the role of GYY4137 in acute lung injury (ALI) via HO-1 regulation. Lung injury was assessed in mice challenged with intratracheal lipopolysaccharide (LPS) and the mechanism of anti-inflammatory effects of GYY4137 was investigated in mice and RAW264.7 cells. GYY4137 reduced the LPS-mediated pulmonary injury and neutrophil infiltration, and inhibited the LPS-induced production of proinflammatory cytokines, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Moreover, GYY4137 suppressed the LPS-evoked NF-κB activation in RAW264.7 cells. GYY4137, not time-expired GYY4137 significantly induced HO-1 expression compared with the LPS group. The beneficial effects of GYY4137 above were reversed by the HO-1 inhibitor tin protoporphyrin (SnPP). These results suggest an anti-inflammatory effect and a therapeutic role of GYY4137 in LPS-induced ALI via HO-1 regulation.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Heme Oxigenase-1/metabolismo , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Lesão Pulmonar Aguda/patologia , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Masculino , Metaloporfirinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Protoporfirinas/farmacologia , Células RAW 264.7
5.
Mol Cancer ; 17(1): 90, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764424

RESUMO

BACKGROUND: Abnormal metabolism, including abnormal lipid metabolism, is a hallmark of cancer cells. Some studies have demonstrated that the lipogenic pathway might promote the development of hepatocellular carcinoma (HCC). However, the role of the lipolytic pathway in HCC has not been elucidated. METHODS: We compared levels of adipose triglyceride lipase (ATGL) in human HCC and healthy liver tissues by real time PCR, western blot and immunohistochemistry. We measured diacylglycerol(DAG) and free fatty acid (FFA) levels in HCC cells driven by the NEAT1-ATGL axis and in HCC tissues. We also assessed the effects of ATGL, DAG, FFA, and NEAT1 on HCC cells proliferation in vitro and in an orthotopic xenograft HCC mouse model. We also performed a luciferase reporter assay to investigate the interaction between NEAT1/ATGL and miR-124-3p. RESULTS: We found that the lipolytic enzyme, ATGL is highly expressed in human HCC tissues and predicts poor prognosis. We also found that high levels of DAG and FFA are present in HCC tissues. Furthermore, the lncRNA-NEAT1 was found to modulate ATGL expression and disrupt lipolysis in HCC cells via ATGL. Notably, ATGL and its products, DAG and FFA, were shown to be responsible for NEAT1-mediated HCC cell growth. NEAT1 regulated ATGL expression by binding miR-124-3p. Additionally, NEAT1 knockdown attenuated HCC cell growth through miR-124-3p/ATGL/DAG+FFA/PPARα signaling. CONCLUSION: Our results reveal that NEAT1-modulates abnormal lipolysis via ATGL to drive HCC proliferation.


Assuntos
Carcinoma Hepatocelular/patologia , Diglicerídeos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lipase/genética , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Lipólise , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , MicroRNAs/genética , Transplante de Neoplasias
6.
Invest New Drugs ; 36(1): 20-27, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28875433

RESUMO

Despite great improvements in surgical procedures and chemotherapy, pancreatic cancer remains one of the most aggressive and fatal human malignancies, with a low 5-year survival rate. Therefore, novel therapeutic strategies for the prevention and treatment of pancreatic cancer are urgently needed. The present study aimed to investigate the mechanisms by which metformin exerts its anticancer effects on the microRNA-mRNA interactions in human pancreatic cancer. Microarray and systematic analyses revealed that the anti-pancreatic cancer effects of metformin were correlated with 3 up-regulated microRNAs and 4 of their target mRNAs. In addition, the microarray and systematic analyses ultimately demonstrated that 3 microRNAs regulated 4 key mRNAs in a sub-pathway of pancreatic cancer and then affected growth, angiogenesis, and apoptosis. This finding may provide a deeper understanding of the mechanisms by which metformin suppresses proliferation and angiogenesis and promotes apoptosis in pancreatic cancer cells. Collectively, this experiment improves the understanding of the mechanisms by which metformin suppresses pancreatic cancer and indicates that metformin, the most commonly used drug for the treatment of diabetes mellitus, may be a promising candidate agent for the treatment of pancreatic cancer.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , MicroRNAs , Neoplasias Pancreáticas/genética , RNA Mensageiro , Linhagem Celular Tumoral , Humanos
7.
Hepatology ; 64(5): 1606-1622, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27533020

RESUMO

Increasing evidence supports a role for N-myc downstream-regulated gene 2 (NDRG2) deregulation in tumorigenesis. We investigated the roles and mechanisms of NDRG2 in human cholangiocarcinoma (CCA) progression. In the present study, expression of NDRG2, microRNA (miR)-181c and leukemia inhibitory factor (LIF) in human CCA and adjacent nontumor tissues were examined. The effects of NDRG2 on CCA tumor growth and metastasis were determined both in vivo and in vitro. The role of the NDRG2/LIF/miR-181c signaling pathway in cholangiocarcinogenesis and metastasis were investigated both in vivo and in vitro. The results showed that human CCA tissues exhibited decreased levels of NDRG2 and increased levels of miR-181c and LIF compared with nontumor tissues. NDRG2 could inhibit CCA cell proliferation, chemoresistance, and metastasis both in vitro and in vivo. We found that NDRG2 is a target gene of miR-181c, and the down-regulation of NDRG2 was attributed to miR-181c overexpression in CCA. Furthermore, miR-181c can be activated by LIF treatment, whereas NDRG2 could inhibit LIF transcription through disrupting the binding between Smad, small mothers against decapentaplegic complex and LIF promoter. Down-regulation of NDRG2 and overexpression of miR-181c or LIF are significantly associated with a poorer overall survival (OS) in CCA patients. Finally, we found that a combination of NDRG2, miR-181c, and LIF expression is a strong predictor of prognosis in CCA patients. CONCLUSION: These results establish the counteraction between NDRG2 and LIF/miR-181c as a key mechanism that regulates cholangiocarcinogenesis and metastasis. Our results elucidated a novel pathway in NDRG2-mediated inhibition of cholangiocarcinogenesis and metastasis and suggest new therapeutic targets, including NDRG2, LIF, miR-181c, and transforming growth factor beta, in CCA prevention and treatment. (Hepatology 2016;64:1606-1622).


Assuntos
Neoplasias dos Ductos Biliares/etiologia , Colangiocarcinoma/etiologia , Retroalimentação Fisiológica , Fator Inibidor de Leucemia/fisiologia , MicroRNAs/fisiologia , Proteínas/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transdução de Sinais
8.
J Cell Mol Med ; 20(12): 2349-2361, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27419805

RESUMO

Previously, we have shown that hydrogen sulphide (H2 S) might be pro-inflammatory during acute pancreatitis (AP) through inhibiting apoptosis and subsequently favouring a predominance of necrosis over apoptosis. In this study, we sought to investigate the detrimental effects of H2 S during AP specifically with regard to its regulation on the impaired autophagy. The incubated levels of H2 S were artificially intervened by an administration of sodium hydrosulphide (NaHS) or DL-propargylglycine (PAG) after AP induction. Accumulation of autophagic vacuoles and pre-mature activation of trypsinogen within acini, which indicate the impairment of autophagy during AP, were both exacerbated by treatment with NaHS but attenuated by treatment with PAG. The regulation that H2 S exerted on the impaired autophagy during AP was further attributed to over-activation of autophagy rather than hampered autophagosome-lysosome fusion. To elucidate the molecular mechanism that underlies H2 S-mediated over-activation of autophagy during AP, we evaluated phosphorylations of AMP-activated protein kinase (AMPK), AKT and mammalian target of rapamycin (mTOR). Furthermore, Compound C (CC) was introduced to determine the involvement of mTOR signalling by evaluating phosphorylations of downstream effecters including p70 S6 kinase (P70S6k) and UNC-51-Like kinase 1 (ULK1). Our findings suggested that H2 S exacerbated taurocholate-induced AP by over-activating autophagy via activation of AMPK and subsequently, inhibition of mTOR. Thus, an active suppression of H2 S to restore over-activated autophagy might be a promising therapeutic approach against AP-related injuries.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Progressão da Doença , Sulfeto de Hidrogênio/farmacologia , Pancreatite/patologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Alcinos/farmacologia , Animais , Linhagem Celular , Glicina/análogos & derivados , Glicina/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Ratos Wistar , Tripsinogênio/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura
9.
Tumour Biol ; 37(6): 7345-55, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26676634

RESUMO

Although advanced surgical operation and chemotherapy have been under taken, pancreatic cancer remains one of the most aggressive and fatal human malignancies with a low 5-year survival rate of less than 5 %. Therefore, novel therapeutic strategies for prevention and remedy are urgently needed in pancreatic cancer. This present research aimed to investigate the anti-cancer effects of hyperoside in human pancreatic cancer cells. Our in vitro results showed that hyperoside suppressed the proliferation and promoted apoptosis of two different human pancreatic cancer cell lines, which correlated with up-regulation of the ratios of Bax/Bcl-2 and Bcl-xL and down-regulation of levels of nuclear factor-κB (NF-κB) and NF-κB's downstream gene products. What's more, using an orthotopic model of human pancreatic cancer, we found that hyperoside also inhibited the tumor growth significantly. Mechanically, these outcomes could also be associated with the up-regulation of the ratios of Bax/Bcl-2 and Bcl-xL and down-regulation of levels of NF-κB and NF-κB's downstream gene products. Collectively, our experiments indicate that hyperoside may be a promising candidate agent for the treatment of pancreatic cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Quercetina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Feminino , Humanos , Hypericum/química , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/fisiologia , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Quercetina/farmacologia , Quercetina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/antagonistas & inibidores , Proteína X Associada a bcl-2/biossíntese , Proteína X Associada a bcl-2/genética , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/biossíntese , Proteína bcl-X/genética
10.
Inflamm Res ; 65(11): 905-915, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27412237

RESUMO

OBJECTIVE: Accumulated studies suggest that exogenously administered carbon monoxide is beneficial for the resolution of acute lung inflammation. The present study aimed to examine the effects and the underlying mechanisms of CORM-2 on thioredoxin-interacting protein (TXNIP)/NLRP3 inflammasome pathway in lipopolysaccharide (LPS)-induced acute lung injury (ALI). METHODS: ALI was intratracheally induced by LPS in C57BL6 mice. CORM-2 or iCORM-2 (30mg/kg i.p.) was administered immediately before LPS instillation. 6 h later, lung bronchoalveolar lavage (BAL) fluids were acquired for IL-18, IL-1ß, and cell measurement, and lung issues were collected for histologic examination, wet/dry weight ratio, and determination of TXNIP/NLRP3 inflammasome expression, NLRP3 inflammasome and NF-ΚB activity, and reactive oxygen species (ROS) production. RESULTS: LPS triggered significant lung edema, lung injury, and leukocyte infiltration, and elevated the levels of IL-1ß and IL-18 in lung BAL fluids. CORM-2 pretreatment resulted in a marked amelioration of lung injury and reduced IL-1ß and IL-18 secretion in BAL fluids. In lung tissues; CORM-2 down-regulated mRNA and protein level of TXNIP, NLRP3, ASC, and caspase-1. Furthermore, CORM-2 reduced ROS production, inhibited NLRP3 inflammasome and NF-κB activity, and interaction of TXNIP-NLRP3. However, no significant differences were detected between the LPS and iCORM-2 (an inactive variant of CORM-2) group. CONCLUSION: CORM-2 suppresses TXNIP/NLRP3 inflammasome pathway and protects against LPS-induced lung injury.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Compostos Organometálicos/farmacologia , Compostos Organometálicos/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
11.
Hepatology ; 59(3): 935-46, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24037855

RESUMO

UNLABELLED: Although gankyrin is involved in the tumorigenicity and metastasis of some malignancies, the role of gankyrin in cholangiocarcinoma (CCA) is unclear. In this study we investigated the expression of gankyrin in human CCA tissues and cell lines. The effects of gankyrin on CCA tumor growth and metastasis were determined both in vivo and in vitro. The results showed that gankyrin was overexpressed in CCA tissues and cell lines. Gankyrin expression was associated with CCA histological differentiation, TNM stage, and metastasis. The multivariate Cox analysis revealed that gankyrin was an independent prognostic indicator for overall survival. Gankyrin overexpression promoted CCA cell proliferation, migration, and invasion, while gankyrin knockdown inhibited CCA tumor growth, metastasis, and induced Rb-dependent senescence and G1 phase cell cycle arrest. Gankyrin increased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and promoted the nuclear translocation of p-STAT3. Suppression of STAT3 signaling by small interfering RNA (siRNA) or STAT3 inhibitor interfered with gankyrin-mediated carcinogenesis and metastasis, while interleukin (IL)-6, a known upstream activator of STAT3, could restore the proliferation and migration of gankyrin-silenced CCA cells. The IL-6 level was decreased by gankyrin knockdown, while increased by gankyrin overexpression. Gankyrin regulated IL-6 expression by way of facilitating the phosphorylation of Rb; meanwhile, rIL-6 treatment increased the expression of gankyrin, suggesting that IL-6 was regulated by a positive feedback loop involving gankyrin in CCA. In the xenograft experiments, gankyrin overexpression accelerated tumor formation and increased tumor weight, whereas gankyrin knockdown showed the opposite effects. The in vivo spontaneous metastasis assay revealed that gankyrin promoted CCA metastasis through IL-6/STAT3 signaling pathway. CONCLUSION: Gankyrin is crucial for CCA carcinogenesis and metastasis by activating IL-6/STAT3 signaling pathway through down-regulating Rb protein.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Colangiocarcinoma/metabolismo , Interleucina-6/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Pontos de Checagem do Ciclo Celular/fisiologia , Movimento Celular/fisiologia , Colangiocarcinoma/genética , Colangiocarcinoma/secundário , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica/patologia , Valor Preditivo dos Testes , Prognóstico , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas/genética , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/fisiologia
12.
Hepatology ; 60(5): 1659-73, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25042864

RESUMO

UNLABELLED: Hepatocellular carcinoma (HCC) is a highly vascularized tumor with frequent extrahepatic metastasis. Active angiogenesis and metastasis are responsible for rapid recurrence and poor survival of HCC. However, the mechanisms that contribute to tumor metastasis remain unclear. Here we evaluate the effects of ATPase inhibitory factor 1 (IF1), an inhibitor of the mitochondrial H(+)-adenosine triphosphate (ATP) synthase, on HCC angiogenesis and metastasis. We found that increased expression of IF1 in human HCC predicts poor survival and disease recurrence after surgery. Patients with HCC who have large tumors, with vascular invasion and metastasis, expressed high levels of IF1. Invasive tumors overexpressing IF1 were featured by active epithelial-mesenchymal transition (EMT) and increased angiogenesis, whereas silencing IF1 expression attenuated EMT and invasion of HCC cells. Mechanistically, IF1 promoted Snai1 and vascular endothelial growth factor (VEGF) expression by way of activating nuclear factor kappa B (NF-κB) signaling, which depended on the binding of tumor necrosis factor (TNF) receptor-associated factor 1 (TRAF1) to NF-κB-inducing kinase (NIK) and the disruption of NIK association with the TRAF2-cIAP2 complex. Suppression of the NF-κB pathway interfered with IF1-mediated EMT and invasion. Chromatin immunoprecipitation assay showed that NF-κB can bind to the Snai1 promoter and trigger its transcription. IF1 was directly transcribed by NF-κB, thus forming a positive feedback signaling loop. There was a significant correlation between IF1 expression and pp65 levels in a cohort of HCC biopsies, and the combination of these two parameters was a more powerful predictor of poor prognosis. CONCLUSION: IF1 promotes HCC angiogenesis and metastasis by up-regulation of Snai1 and VEGF transcription, thereby providing new insight into HCC progression and IF1 function. (Hepatology 2014;60:1659-1673).


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , NF-kappa B/metabolismo , Neovascularização Patológica/metabolismo , Proteínas/metabolismo , Animais , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , China/epidemiologia , Estudos de Coortes , Transição Epitelial-Mesenquimal , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/secundário , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Fosfoproteínas , Prognóstico , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Ativação Transcricional , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas da Matriz Viral , Proteína Inibidora de ATPase
13.
Mol Cancer ; 13: 133, 2014 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-24884809

RESUMO

BACKGROUND: Arsenic trioxide has been demonstrated as an effective anti-cancer drug against leukemia and solid tumors both in vitro and in vivo. However, recent phase II trials demonstrated that single agent arsenic trioxide was poorly effective against hepatocellular carcinoma (HCC), which might be due to drug resistance. METHODS: Mutation detection of p53 gene in arsenic trioxide resistant HCC cell lines was performed. The therapeutic effects of arsenic trioxide and Nutlin-3 on HCC were evaluated both in vitro and in vivo. A series of experiments including MTT, apoptosis assays, co-Immunoprecipitation, siRNA transfection, lentiviral infection, cell migration, invasion, and epithelial-mesenchy-mal transition (EMT) assays were performed to investigate the underlying mechanisms. RESULTS: The acquisition of p53 mutation contributed to arsenic trioxide resistance and enhanced metastatic potential of HCC cells. Mutant p53 (Mutp53) silence could re-sensitize HCC resistant cells to arsenic trioxide and inhibit the metastatic activities, while mutp53 overexpression showed the opposite effects. Neither arsenic trioxide nor Nutlin-3 could exhibit obvious effects against arsenic trioxide resistant HCC cells, while combination of them showed significant effects. Nutlin-3 can not only increase the intracellular arsenicals through inhibition of p-gp but also promote the p73 activation and mutp53 degradation mediated by arsenic trioxide. In vivo experiments indicated that Nutlin-3 can potentiate the antitumor activities of arsenic trioxide in an orthotopic hepatic tumor model and inhibit the metastasis to lung. CONCLUSIONS: Acquisitions of p53 mutations contributed to the resistance of HCC to arsenic trioxide. Nutlin-3 could overcome arsenic trioxide resistance and inhibit tumor metastasis through p73 activation and promoting mutant p53 degradation mediated by arsenic trioxide.


Assuntos
Antineoplásicos/farmacologia , Arsenicais/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Imidazóis/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Óxidos/farmacologia , Piperazinas/farmacologia , Proteína Supressora de Tumor p53/genética , Animais , Trióxido de Arsênio , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Nus , Mutação , Transplante de Neoplasias , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
Apoptosis ; 19(1): 210-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24114361

RESUMO

Bufalin extracts are a part of traditional Chinese medicine, Chansu. In the current study, we investigated the effect of bufalin on the proliferation of the human hepatocellular carcinoma (HCC) cell lines, Huh-7 and HepG-2, and explored the therapeutic potential of the drug. Our results demonstrated that bufalin markedly inhibited cell proliferation and promoted apoptosis in the Huh-7 and HepG-2 cells in vitro. The underlying mechanism of the bufalin-induced apoptosis was the induction of endoplasmic reticulum (ER) stress via the IRE1-JNK pathway. In addition, during the ER stress response, the autophagy pathway, characterized by the conversion of LC3-I to LC3-II, was activated, resulting in increased Beclin-1 protein levels, decreased p62 expression and stimulation of autophagic flux. Our data supported the pro-survival role of bufalin-induced autophagy when the autophagy pathway was blocked with specific chemical inhibitors; the involvement of the IRE1 pathway in the ER stress-induced autophagy was also demonstrated when the expression of IRE1 and CHOP was silenced using siRNA. These data indicate that combining bufalin with a specific autophagy inhibitor could be a promising therapeutic approach for the treatment of HCC.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Bufanolídeos/farmacologia , Carcinoma Hepatocelular/fisiopatologia , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Hepáticas/fisiopatologia , MAP Quinase Quinase 4/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/enzimologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/enzimologia , MAP Quinase Quinase 4/genética , Regulação para Cima/efeitos dos fármacos
15.
Apoptosis ; 19(1): 58-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24101212

RESUMO

The aim of this study was to investigate the immunoregulatory effects of hyperbaric oxygen (HBO) via promoting the apoptosis of peripheral blood lymphocytes (PBLs) to attenuate the severity of early stage acute pancreatitis (AP) in rats. Additionally, the persistence of the HBO treatment effects was evaluated. One hundred and twenty male Wistar rats were randomized into four groups: sham, AP, AP + normobaric oxygen (NBO), and AP + HBO. Each group consisted of 30 rats. Four hours after the induction of AP, the 30 rats in the AP + NBO group were given normobaric oxygen treatment with 100 % oxygen at 1 atm for 90 min. The 30 rats in the AP + HBO group received 100 % oxygen at 2.5 atm for 90 min, with a compression/decompression time of 15 min. The 30 rats in the AP group remained untreated. At 6, 12, and 24 h after the induction of AP, surviving rats from each group were sacrificed, and the blood and tissue samples were collected for the following measurements: the partial pressure of oxygen (PaO2) and oxygen saturation (SaO2) of the arterial blood, the levels of serum amylase, lipase, interleukin-2 (IL-2), interferon-γ (IFN-γ), interleukin-10 (IL-10), hepatocyte growth factor (HGF), and reactive oxygen species (ROS), and the mitochondrial membrane potential (∆Ψm) of the PBLs. The expression levels of procaspase-3, caspase-3, procaspase-9, and caspase-9 were also evaluated in the PBLs. Additionally, the apoptosis of PBLs was assessed, and the pancreatic tissues were subjected to a histopathological analysis by pathological grading and scoring. The histopathology of the lung, liver, kidney, duodenum, and heart was also analyzed at 12 h after the induction of AP. Significant differences were found at 6 and 12 h after AP induction. The HBO treatment significantly elevated the PaO2 and SaO2 levels, and the ROS levels in the PBLs. Additionally, HBO downregulated the levels of amylase and lipase. The HBO treatment also reduced the ∆Ψm levels, upregulated the expression of caspase-3 and caspase-9, and increased the apoptosis rate of the PBLs. Moreover, the HBO treatment decreased the serum concentrations of IL-2, IFN-γ and HGF, and reduced the pathological scores of the pancreatic tissue. The histopathological changes of the lung, liver, kidney, duodenum, and heart were also improved. A significant elevation of IL-10 occurred only at the 12-h time point. However, no obvious differences were found at the 24-h time point. This study demonstrated that the HBO treatment can promote the apoptosis of PBLs via a mitochondrial-dependent pathway and inhibit the inflammatory response. These immunoregulatory effects may play an important therapeutic role in attenuating the severity of early stage AP. The repeated administration of HBO or the use of HBO in combination with other approaches may further improve outcomes.


Assuntos
Apoptose , Linfócitos/citologia , Oxigênio/metabolismo , Pancreatite/metabolismo , Pancreatite/fisiopatologia , Doença Aguda/terapia , Animais , Caspase 3/metabolismo , Caspase 9/metabolismo , Humanos , Oxigenoterapia Hiperbárica , Interferon gama/metabolismo , Interleucina-10/metabolismo , Linfócitos/metabolismo , Masculino , Pancreatite/patologia , Pancreatite/terapia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
16.
BMC Cancer ; 14: 783, 2014 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-25344679

RESUMO

BACKGROUND: Interleukin 6 (IL-6)-mediated signal transducers and activators of transcription 3 (STAT-3) phosphorylation (activation) is aberrantly sustained in cholangiocarcinoma cells resulting in enhanced myeloid cell leukemia 1 (Mcl-1) expression and resistance to apoptosis. FTY720, a new immunosuppressant, derived from ISP-1, has been studied for its putative anti-cancer properties. This study aimed to elucidate the mechanism by which FTY720 mediates antitumor effects in cholangiocarcinoma (CC) cells. METHODS: Three CC cell lines were examined, QBC939, TFK-1, and HuCCT1. The therapeutic effects of FTY720 were evaluated in vitro and in vivo. Cell proliferation, apoptosis, cell cycle, invasive potential, and epithelial- mesenchy-mal transition (EMT) were examined. RESULTS: FTY720 greatly inhibited CC cells proliferation and EMT in vitro and in vivo, and this effect was associated with dephosphorylation of STAT3tyr705. FTY720 induced apoptosis and G1 phase arrest in CC cells, and inhibited invasion of CC cells. Western blot analysis showed that FTY720 induced cleavage of caspases 3, 8 and 9, and of PARP, in a dose-dependent manner, consistent with a substantial decrease in p-STAT3, Bcl-xL, Bcl-2, survivin, cyclin D1, cyclin E, N-cadherin, vimentin, VEGF and TWIST1. In vivo studies showed that tumor growth and metastasis were significantly suppressed after FTY720 treatment. CONCLUSIONS: These results suggest that FTY720 induces a significant decrease in p-STAT3, which inhibits proliferation and EMT of CC cells, and then induces G1 phase arrest and apoptosis. We have characterized a novel immunosuppressant, which shows potential anti-tumor effects on CC via p-STAT3 inhibition. FTY720 merits further investigation and warrants clinical evaluation.


Assuntos
Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Propilenoglicóis/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/tratamento farmacológico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Cloridrato de Fingolimode , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Metástase Neoplásica , Fosforilação/efeitos dos fármacos , Esfingosina/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Biol Rep ; 41(4): 2101-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24452711

RESUMO

The present study has investigated the anti-tumor activity and the underlying mechanisms of matrine on human colon cancer LoVo cells. Matrine inhibited the proliferation of the cells in dose- and time-dependent manners. The concentration required for 50 % inhibition (IC50) was 1.15, 0.738, and 0.414 mg/ml, when cell were incubated with matrine for 24, 48, and 72 h, respectively. Matrine induced cell cycle arrest at G1 phase by downregulating cyclin D1 and upregulating p27 and p21. Matrine induced cell apoptosis by reducing the ratio of Bcl-2/Bax and increasing the activation of caspase-9 in a dose-dependent manner. Matrine displayed its anti-tumor activity by inactivating Akt, the upstream factor of the above proteins. Matrine significantly reduced the protein levels of pAkt, and increased the protein levels of other downstream factors, pBad and pGSK-3ß. Specific inhibition of pAkt induced cell apoptosis, and synergized with matrine to inhibit the proliferation of LoVo cells; whereas activation of Akt neutralized the inhibitory effect of matrine on cell proliferation. The present study has demonstrated that matrine inhibits proliferation and induces apoptosis of human colon cancer LoVo cells by inactivating Akt pathway, indicating matrine may be a potential anti-cancer agent for colon cancer.


Assuntos
Alcaloides/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolizinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Matrinas
18.
Mol Cancer ; 12(1): 114, 2013 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-24093956

RESUMO

BACKGROUND: Gankyrin has shown to be overexpressed in human liver cancers and plays a complex role in hepatocarcinogenesis. Panobinostat (LBH589), a new hydroxamic acid-derived histone deacetylase inhibitor has shown promising anticancer effects recently. Here, we investigated the potential of LBH589 as a form of treatment for hepatocellular carcinoma (HCC). METHODS: Gankyrin plasmid was transfected into HCC cells, and the cells were selected for more than 4 weeks by incubation with G418 for overexpression clones. The therapeutic effects of LBH589 were evaluated in vitro and in vivo. Cell proliferation, apoptosis, cell cycle, invasive potential, and epithelial-mesenchy-mal transition (EMT) were examined. RESULTS: LBH589 significantly inhibited HCC growth and metastasis in vitro and in vivo. Western blotting analysis indicated that LBH589 could decrease the expression of gankyrin and subsequently reduced serine-phosphorylated Akt and tyrosine-phosphorylated STAT3 expression although the total Akt and STAT3 were unaffected. LBH589 inhibited metastasis in vitro via down-regulation of N-cadherin, vimentin, TWIST1, VEGF and up-regulation of E-cadherin. LBH589 also induced apoptosis and G1 phase arrest in HCC cell lines. Ectopic expression of gankyrin attenuated the effects of LBH589, which indicates that gankyrin might play an important role in LBH589 mediated anticancer effects. Lastly, in vivo study indicated that LBH589 inhibited tumor growth and metastasis, without discernable adverse effects comparing to control group, with abrogating gankyrin/STAT3/Akt pathway. CONCLUSIONS: Our results suggested that LBH589 could inhibit HCC growth and metastasis through down-regulating gankyrin/STAT3/Akt pathway. LBH589 may present itself as a novel therapeutic strategy for HCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Acetilação , Animais , Carcinoma Hepatocelular/secundário , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células Hep G2 , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Panobinostat , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/metabolismo
19.
Apoptosis ; 18(1): 28-42, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23054084

RESUMO

We aimed to investigate the relationship between the synthesis of hydrogen sulfide (H(2)S) and the pancreatic acinar cell apoptosis in severe acute pancreatitis (SAP) rats, as well as analyse the potential apoptotic pathway involved in this process. Sixty rats had been equally divided into four groups: sham, SAP, SAP + sodium hydrosulfide (NaHS) and SAP + DL-propargylglycine (PAG). 24 h after SAP induction, all surviving animals of each group were sacrificed to collect blood and tissue samples for the following measurements: the level of serum H(2)S as well as the levels of tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), H(2)S synthesizing activity, CSE mRNA and protein expression, maleic dialdehyde (MDA) and myeloperoxidase (MPO) activity, the expression of Bax, Bcl-2, caspase-3, -8 and -9, the release of cytochrome c and the activation of nuclear factor-kappa B (NF-κB), ERK1/2, JNK1/2 and p38 in pancreas. Furthermore, in situ detection of cell apoptosis was examined and the severity of pancreatic damage was analyzed by pathological grading and scoring. Results Significant differences in every index except IL-10 had been found between the SAP, NaHS and PAG groups (P < 0.05). Treatment with PAG obviously induced the pancreatic acinar cell apoptosis as well as improved all the pathological changes and inflammatory parameters. In contrast, administration of NaHS significantly attenuated apoptosis in the pancreas and aggravated the severity of pancreatic damage. Moreover, the expressions of caspase-3, -8, -9 and the release of cytochrome c were all increased in the apoptotic cells, and the activity of NF-κB as well as the phosphorylation of ERK1/2, JNK1/2 and p38 decreased accompanying with the reduction of the serum H(2)S level. H(2)S plays a pivotal role in the regulation of pancreatic acinar cell apoptosis in SAP rats. The present results showed that inhibition of H(2)S synthesis provided protection for SAP rats via inducing acinar cell apoptosis. This process acted through both extrinsic and intrinsic apoptotic pathways, and may be regulated by reducing the activity of NF-κB.


Assuntos
Apoptose/efeitos dos fármacos , Sulfeto de Hidrogênio/sangue , Pancreatite Necrosante Aguda/prevenção & controle , Aldeídos/sangue , Alcinos/farmacologia , Animais , Caspases/metabolismo , Cistationina gama-Liase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Sulfeto de Hidrogênio/metabolismo , Interleucina-10/sangue , Masculino , Pâncreas/citologia , Pâncreas/patologia , Pancreatite Necrosante Aguda/patologia , Peroxidase/metabolismo , Ratos , Ratos Wistar , Sulfetos/farmacologia , Fator de Necrose Tumoral alfa/sangue
20.
Exp Lung Res ; 38(4): 173-82, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22417130

RESUMO

Acute lung injury (ALI) is often associated with sepsis and is the most common cause of acute respiratory failure. The authors evaluated the role of the heme oxygenase (HO)/carbon monoxide (CO) system on lung injury in a cecal ligation and puncture (CLP)-induced mouse model of ALI. The authors established CLP-induced ALI in C57BL/6 mice. They pretreated CLP-induced mice with HO-1 inducer (hemin) or HO-1 inhibitor (Zn protoporphyrin [Znpp]) and determined various lung injury parameters including partial pressure of arterial oxygen, thrombosis, edema, and plasma malondialdehyde (MDA), and myeloperoxidase (MPO) level. Enzyme-linked immunosorbent assay (ELISA) was performed to measure plasma thrombomodulin (TM) and activated protein C (APC) levels. TM and HO-1 expression in lung tissue was evaluated by immunofluorescence staining and Western blotting. Survival rate was also monitored. CLP-induced ALI was associated with decreased partial pressure of arterial oxygen, and increased thrombosis, edema, and plasma MDA, and MPO level. Plasma TM was significantly up-regulated, whereas cell surface TM in lung tissue was significantly decreased in the CLP group compared to the sham animals. Pretreatment with hemin caused up-regulation of HO-1 expression and improved partial pressure of arterial oxygen. Hemin pretreatment also caused a significant decrease in plasma TM along with increased cell surface TM expression in lung tissue, suggesting attenuation of lung injury. Survival data showed that no difference for survival between CLP animals pretreated with hemin or Znpp. Taken together, HO-1 exerts its protective effects on CLP-induced ALI via regulating cell surface TM and APC expression and modulating blood coagulation.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Heme Oxigenase-1/metabolismo , Proteína C/metabolismo , Trombomodulina/sangue , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Ceco , Indução Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/biossíntese , Hemina/farmacologia , Ligadura , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Protoporfirinas/farmacologia , Punções , Sepse/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA