Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 364: 143270, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241836

RESUMO

Particulate matter from motor vehicle exhaust is a type of important atmospheric particulates, which can absorb sunlight affecting its photochemical behavior. However, the photochemical activity of water-soluble organic compounds (WSOC) in motor vehicle exhaust particulate matter has not been explored. Here, we applied WSOC in particulate matter from motor vehicle exhaust to investigate the photogenerating ability of its reactive oxygen species (ROS) and its effect based on model phenol photodegradation with the comparison between WSOC in diesel particulate matter and in gasoline particulate matter. The WSOC in diesel particulate matter indicates higher abililty to generate ROS. The main active substance produced by WSOC in the presence of light is 3WSOC*, the secondary substance is 1O2, and small amounts of ·OH and O2·- are also produced. Less active material was produced as WSOC photoaging time increases. Furthermore, the WSOC in diesel particulate matter is more sensitive to light exposure compared to WSOC in gasoline particulate matter. The effects of common atmospheric ionic components on model phenol photodegradation were also explored. Whether WSOC of diesel particulate matter or WSOC of gasoline particulate matter, ammonium nitrate, ammonium sulfate, and ferric chloride promote degradation of model phenol, and copper sulfate inhibited model phenol degradation. However, a different trend emerged with the addition of sodium chloride, which promoted the degradation of model phenol in WSOC of diesel particulate matter and inhibited the degradation in WSOC of gasoline particulate matter.

2.
J Hazard Mater ; 473: 134615, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761768

RESUMO

Naturally strong ultraviolet irradiation at high altitudes causes photobleaching of plateau lake DOM (P-DOM) and affects its photochemical activity. However, the photoreactivity of P-DOM has remained unclear under natural photobleaching condition. Here, six P-DOM samples isolated from plateau lakes in Yunnan Province, China as well as two reference DOM as comparisons were used to explore the photogeneration of reactive species (RS) and their effects on 17ß-estradiol photodegradation. Compared with SRHA/SRFA, P-DOM has lower aromaticity, average molecular weight, and electron-donating capacity. The quantum yields of triplet state P-DOM (3P-DOM*), 1O2, and ∙OH produced in P-DOM solutions were greatly higher than those of reference DOM. The RS quantum yields had positive linear correlations with E2/E3 and SR, whereas were negatively linear correlated with SUVA25. Radical quenching experiments showed that 3P-DOM* was the prominent RS for 17ß-estradiol photodegradation, and its contribution exceeded 70% for each of P-DOM. 3P-DOM*-mediated photodegradation was mainly attributed to the electron-transfer reactions with an average second-order rate constant of 4.62 × 109 M-1s-1, indicating the strong photoreactivity towards 17ß-estradiol. These findings demonstrate that P-DOM is an efficient photosensitizer for RS production, among which 3P-DOM* may play an important role in enhanced photodegradation for organic micropollutants in plateau lake enriched with DOM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA