Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nucleic Acids Res ; 51(6): 2691-2708, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36744476

RESUMO

Pseudomonas aeruginosa is capable of causing acute and chronic infections in various host tissues, which depends on its abilities to effectively utilize host-derived nutrients and produce protein virulence factors and toxic compounds. However, the regulatory mechanisms that direct metabolic intermediates towards production of toxic compounds are poorly understood. We previously identified a regulatory protein PvrA that controls genes involved in fatty acid catabolism by binding to palmitoyl-coenzyme A (CoA). In this study, transcriptomic analyses revealed that PvrA activates the Pseudomonas quinolone signal (PQS) synthesis genes, while suppressing genes for production of polyhydroxyalkanoates (PHAs). When palmitic acid was the sole carbon source, mutation of pvrA reduced production of pyocyanin and rhamnolipids due to defective PQS synthesis, but increased PHA production. We further solved the co-crystal structure of PvrA with palmitoyl-CoA and identified palmitoyl-CoA-binding residues. By using pvrA mutants, we verified the roles of the key palmitoyl-CoA-binding residues in gene regulation in response to palmitic acid. Since the PQS signal molecules, rhamnolipids and PHA synthesis pathways are interconnected by common metabolic intermediates, our results revealed a regulatory mechanism that directs carbon flux from carbon/energy storage to virulence factor production, which might be crucial for the pathogenesis.


Assuntos
Poli-Hidroxialcanoatos , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Ácido Palmítico/metabolismo , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Poli-Hidroxialcanoatos/metabolismo
2.
Sensors (Basel) ; 24(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38894237

RESUMO

The Markov method is a common reliability assessment method. It is often used to describe the dynamic characteristics of a system, such as its repairability, fault sequence and multiple degradation states. However, the "curse of dimensionality", which refers to the exponential growth of the system state space with the increase in system complexity, presents a challenge to reliability assessments for complex systems based on the Markov method. In response to this challenge, a novel reliability assessment method for complex systems based on non-homogeneous Markov processes is proposed. This method entails the decomposition of a complex system into multilevel subsystems, each with a relatively small state space, in accordance with the system function. The homogeneous Markov model or the non-homogeneous Markov model is established for each subsystem/system from bottom to top. In order to utilize the outcomes of the lower-level subsystem models as inputs to the upper-level subsystem model, an algorithm is proposed for converting the unavailability curve of a subsystem into its corresponding 2×2 dynamic state transition probability matrix (STPM). The STPM is then employed as an input to the upper-level system's non-homogeneous Markov model. A case study is presented using the reliability assessment of the Reactor Protection System (RPS) based on the proposed method, which is then compared with the models based on the other two contrast methods. This comparison verifies the effectiveness and accuracy of the proposed method.

3.
Appl Environ Microbiol ; 89(6): e0209422, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184394

RESUMO

Pseudomonas aeruginosa possesses three type VI secretion systems (T6SSs) that are involved in interspecies competition, internalization into epithelial cells, and virulence. Host-derived mucin glycans regulate the T6SSs through RetS, and attacks from other species activate the H1-T6SS. However, other environmental signals that control the T6SSs remain to be explored. Previously, we determined PitA to be a constitutive phosphate transporter, whose mutation reduces the intracellular phosphate concentration. Here, we demonstrate that mutation in the pitA gene increases the expression of the H2- and H3-T6SS genes and enhances bacterial uptake by A549 cells. We further found that mutation of pitA results in activation of the quorum sensing (QS) systems, which contributes to the upregulation of the H2- and H3-T6SS genes. Overexpression of the phosphate transporter complex genes pstSCAB or knockdown of the phosphate starvation response regulator gene phoB in the ΔpitA mutant reduces the expression of the QS genes and subsequently the H2- and H3-T6SS genes and bacterial internalization. Furthermore, growth of wild-type PA14 in a low-phosphate medium results in upregulation of the QS and H2- and H3-T6SS genes and bacterial internalization compared to those in cells grown in a high-phosphate medium. Deletion of the phoB gene abolished the differences in the expression of the QS and T6SS genes as well as bacterial internalization in the low- and high- phosphate media. Overall, our results elucidate the mechanism of PitA-mediated regulation on the QS system and H2- and H3-T6SSs and reveal a novel pathway that regulates the T6SSs in response to phosphate starvation. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogenic bacterium that causes acute and chronic infections in humans. The type VI secretion systems (T6SSs) have been shown to associate with chronic infections. Understanding the mechanism used by the bacteria to sense environmental signals and regulate virulence factors will provide clues for developing novel effective treatment strategies. Here, we demonstrate a relationship between a phosphate transporter and the T6SSs and reveal a novel regulatory pathway that senses phosphate limitation and controls bacterial virulence factors in P. aeruginosa.


Assuntos
Sistemas de Secreção Tipo VI , Humanos , Sistemas de Secreção Tipo VI/genética , Pseudomonas aeruginosa/fisiologia , Infecção Persistente , Fatores de Virulência/metabolismo , Percepção de Quorum/genética , Fosfatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
Cell Biochem Funct ; 41(8): 1106-1114, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38041420

RESUMO

The N-methyladenosine (m6A) modification of ribosomal RNA (rRNA) plays critical roles in regulating the function of ribosomes, the essential molecular machines that translate genetic information from mRNA into proteins. Specifically, m6A modification affects ribosome biogenesis, stability, and function by regulating the processing and maturation of rRNA, the assembly and composition of ribosomes, and the accuracy and efficiency of translation. Furthermore, m6A modification allows for dynamic regulation of translation in response to environmental and cellular signals. Therefore, a deeper understanding of the mechanisms and functions of m6A modification in rRNA will advance our knowledge of ribosome-mediated gene expression and facilitate the development of new therapeutic strategies for ribosome-related diseases.


Assuntos
RNA Ribossômico , Ribossomos , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação
5.
Nucleic Acids Res ; 49(12): 6756-6770, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139014

RESUMO

The ability to fine tune global gene expression in response to host environment is critical for the virulence of pathogenic bacteria. The host temperature is exploited by the bacteria as a cue for triggering virulence gene expression. However, little is known about the mechanism employed by Pseudomonas aeruginosa to response to host body temperature. CspA family proteins are RNA chaperones that modulate gene expression. Here we explored the functions of P. aeruginosa CspA family proteins and found that CspC (PA0456) controls the bacterial virulence. Combining transcriptomic analyses, RNA-immunoprecipitation and high-throughput sequencing (RIP-Seq), we demonstrated that CspC represses the type III secretion system (T3SS) by binding to the 5' untranslated region of the mRNA of exsA, which encodes the T3SS master regulatory protein. We further demonstrated that acetylation at K41 of the CspC reduces its affinity to nucleic acids. Shifting the culture temperature from 25°C to 37°C or infection of mouse lung increased the CspC acetylation, which derepressed the expression of the T3SS genes, resulting in elevated virulence. Overall, our results identified the regulatory targets of CspC and revealed a regulatory mechanism of the T3SS in response to temperature shift and host in vivo environment.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Pseudomonas aeruginosa/genética , Transativadores/genética , Sistemas de Secreção Tipo III/genética , Células A549 , Acetilação , Animais , Proteínas de Bactérias/biossíntese , Humanos , Camundongos , Pneumonia Bacteriana/microbiologia , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Transativadores/biossíntese , Virulência
6.
Antimicrob Agents Chemother ; 66(7): e0042122, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35695577

RESUMO

Metallo-ß-lactamase (MBL)-producing Pseudomonas aeruginosa is increasingly reported worldwide and usually causes infections with high mortality rates. Aztreonam/avibactam is a ß-lactam/ß-lactamase inhibitor (BLBLI) combination that is under clinical trials. The advantage of aztreonam/avibactam over the currently used BLBLIs lies in its effectiveness against MBL-producing pathogens, making it one of the few drugs that can be used to treat infections caused by MBL-producing P. aeruginosa. However, the molecular mechanisms underlying aztreonam/avibactam resistance development remain unexplored. Here, in this study, we performed an in vitro evolution assay by using a previously identified MBL-producing P. aeruginosa clinical isolate, NKPa-71, and found mutations in a novel gene, PA4292, in the aztreonam/avibactam-resistant mutants. By mutation of PA4292 in the reference strain PA14, we verified the role of PA4292 in the resistance to aztreonam/avibactam and ß-lactams. Transcriptomic analyses revealed upregulation of pyocyanin biosynthesis genes among the most overexpressed in the PA4292 mutant. We further demonstrated that pyocyanin overproduction in the PA4292 mutant increased the bacterial resistance to ß-lactams by reducing drug influx. These data revealed a novel mechanism that might lead to the development of resistance to aztreonam/avibactam and ß-lactams.


Assuntos
Aztreonam , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Aztreonam/farmacologia , Aztreonam/uso terapêutico , Testes de Sensibilidade Microbiana , Mutação , Pseudomonas aeruginosa/genética , Piocianina , Resistência beta-Lactâmica/genética , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética , beta-Lactamas/farmacologia
7.
Antimicrob Agents Chemother ; 66(12): e0099222, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36346250

RESUMO

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that causes nosocomial infections in immunocompromised patients. ß-lactam and aminoglycoside antibiotics are commonly used in the treatment of P. aeruginosa infections. Previously, we found that mutation in a PA4292 gene increases bacterial resistance to ß-lactam antibiotics. In this study, we demonstrated that mutation in PA4292 increases bacterial susceptibility to aminoglycoside antibiotics. We further found enhanced uptake of tobramycin by the ΔPA4292 mutant, which might be due to an increase of proton motive force (PMF). Sequence analysis revealed PA4292 is homologous to the Escherichia coli phosphate transporter PitA. Mutation of PA4292 indeed reduces intracellular phosphate concentration. We thus named PA4292 as pitA. Although the PMF is enhanced in the ΔpitA mutant, the intracellular ATP concentration is lower than that in the isogenic wild-type strain PA14, which might be due to lack of the ATP synthesis substrate phosphate. Overexpression of the phosphate transporter complex genes pstSCAB in the ΔpitA mutant restores the intracellular phosphate concentration, PMF, ATP synthesis, and aminoglycosides resistance. In addition, growth of wild-type PA14 in a low-phosphate medium resulted in higher PMF and aminoglycoside susceptibility compared to cells grown in a high-phosphate medium. Overall, our results demonstrate the roles of PitA in phosphate transportation and reveal the relationship between intracellular phosphate and aminoglycoside susceptibility.


Assuntos
Força Próton-Motriz , Pseudomonas aeruginosa , Trifosfato de Adenosina , Aminoglicosídeos/farmacologia , Aminoglicosídeos/química , Antibacterianos/farmacologia , beta-Lactamas , Escherichia coli/genética , Proteínas de Transporte de Fosfato , Fosfatos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
8.
Nucleic Acids Res ; 48(11): 5967-5985, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32406921

RESUMO

During infection of a host, Pseudomonas aeruginosa orchestrates global gene expression to adapt to the host environment and counter the immune attacks. P. aeruginosa harbours hundreds of regulatory genes that play essential roles in controlling gene expression. However, their contributions to the bacterial pathogenesis remain largely unknown. In this study, we analysed the transcriptomic profile of P. aeruginosa cells isolated from lungs of infected mice and examined the roles of upregulated regulatory genes in bacterial virulence. Mutation of a novel regulatory gene pvrA (PA2957) attenuated the bacterial virulence in an acute pneumonia model. Chromatin immunoprecipitation (ChIP)-Seq and genetic analyses revealed that PvrA directly regulates genes involved in phosphatidylcholine utilization and fatty acid catabolism. Mutation of the pvrA resulted in defective bacterial growth when phosphatidylcholine or palmitic acid was used as the sole carbon source. We further demonstrated that palmitoyl coenzyme A is a ligand for the PvrA, enhancing the binding affinity of PvrA to its target promoters. An arginine residue at position 136 was found to be essential for PvrA to bind palmitoyl coenzyme A. Overall, our results revealed a novel regulatory pathway that controls genes involved in phosphatidylcholine and fatty acid utilization and contributes to the bacterial virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Genes Bacterianos/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Animais , Arginina/metabolismo , Sequência de Bases , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Ligantes , Camundongos , Modelos Moleculares , Mutação , Ácido Palmítico/metabolismo , Palmitoil Coenzima A/metabolismo , Fosfatidilcolinas/metabolismo , Pneumonia Bacteriana/microbiologia , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/genética , Transcriptoma , Virulência/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-33257447

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that shows high intrinsic resistance to a variety of antibiotics. The MexX-MexY-OprM efflux pump plays an important role in bacterial resistance to aminoglycoside antibiotics. Polynucleotide phosphorylase (PNPase) is a highly conserved exonuclease that plays important roles in RNA processing and the bacterial response to environmental stresses. Previously, we demonstrated that PNPase controls the tolerance to fluoroquinolone antibiotics by influencing the production of pyocin in P. aeruginosa In this study, we found that mutation of the PNPase-encoding gene (pnp) in P. aeruginosa increases bacterial tolerance to aminoglycoside antibiotics. We further demonstrate that the upregulation of the mexXY genes is responsible for the increased tolerance of the pnp mutant. Furthermore, our experimental results revealed that PNPase controls the translation of the armZ mRNA through its 5' untranslated region (UTR). ArmZ had previously been shown to positively regulate the expression of mexXY Therefore, our results revealed a novel role of PNPase in the regulation of armZ and subsequently the MexXY efflux pump.


Assuntos
Polirribonucleotídeo Nucleotidiltransferase , Pseudomonas aeruginosa , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética
10.
Pharm Res ; 38(12): 2035-2046, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34862570

RESUMO

PURPOSE: To estimate hepatobiliary clearances of rosuvastatin via simultaneously fitting to reported human positron emission tomography (PET) data in the liver and gallbladder. METHODS: A hepatobiliary model incorporating five intrinsic hepatobiliary clearances (active uptake clearance at the sinusoidal membrane, efflux clearance by passive diffusion through the sinusoidal membrane, influx clearance by passive diffusion through sinusoidal membrane, clearance of biliary excretion at the canalicular membrane, and intercompartment clearance from the intrahepatic bile duct to the gallbladder) and three compartments (liver, intrahepatic bile duct, and gallbladder) was developed to simultaneously fit rosuvastatin liver and gallbladder data from a representative subject reported by Billington et al. (1). Two liver blood supply input functions, arterial input function and dual input function (using peripheral venous as an alternative to portal vein), were assessed. Additionally, the predictive performance between the established model and four reported models trained with only systemic exposure data, was evaluated by comparing simulated liver and gallbladder profiles with observations. RESULTS: The established hepatobiliary model well captured the kinetic profiles of rosuvastatin in the liver and gallbladder during the PET scans. Application of dual input function led to a marked underestimation of liver concentrations at the initial stage after i.v. dosing which cannot be offset by altering model parameter values. The simulated hepatobiliary profiles from three of the reported models demonstrated substantial deviation from the observed data. CONCLUSIONS: The present study highlights the necessity of using hepatobiliary data to verify and improve the predictive performance of hepatic disposition of rosuvastatin.


Assuntos
Vesícula Biliar/metabolismo , Eliminação Hepatobiliar , Fígado/metabolismo , Rosuvastatina Cálcica/farmacocinética , Conjuntos de Dados como Assunto , Vesícula Biliar/diagnóstico por imagem , Humanos , Fígado/diagnóstico por imagem , Modelos Biológicos , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
11.
Proc Natl Acad Sci U S A ; 114(29): E5940-E5949, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28673972

RESUMO

In the mammalian genome, certain genomic loci/regions pose greater challenges to the DNA replication machinery (i.e., the replisome) than others. Such known genomic loci/regions include centromeres, common fragile sites, subtelomeres, and telomeres. However, the detailed mechanism of how mammalian cells cope with the replication stress at these loci/regions is largely unknown. Here we show that depletion of FANCM, or of one of its obligatory binding partners, FAAP24, MHF1, and MHF2, induces replication stress primarily at the telomeres of cells that use the alternative lengthening of telomeres (ALT) pathway as their telomere maintenance mechanism. Using the telomere-specific single-molecule analysis of replicated DNA technique, we found that depletion of FANCM dramatically reduces the replication efficiency at ALT telomeres. We further show that FANCM, BRCA1, and BLM are actively recruited to the ALT telomeres that are experiencing replication stress and that the recruitment of BRCA1 and BLM to these damaged telomeres is interdependent and is regulated by both ATR and Chk1. Mechanistically, we demonstrated that, in FANCM-depleted ALT cells, BRCA1 and BLM help to resolve the telomeric replication stress by stimulating DNA end resection and homologous recombination (HR). Consistent with their roles in resolving the replication stress induced by FANCM deficiency, simultaneous depletion of BLM and FANCM, or of BRCA1 and FANCM, leads to increased micronuclei formation and synthetic lethality in ALT cells. We propose that these synthetic lethal interactions can be explored for targeting the ALT cancers.


Assuntos
Proteína BRCA1/metabolismo , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , RecQ Helicases/metabolismo , Homeostase do Telômero/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Linhagem Celular , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , DNA Helicases/genética , Recombinação Homóloga , Humanos , RecQ Helicases/genética , Telômero/genética , Telômero/metabolismo
12.
Curr Genet ; 65(1): 213-222, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29951698

RESUMO

The Pseudomonas aeruginosa RsaL is a negative regulator of the quorum sensing signal synthesis gene lasI. The expression of RsaL is directly activated by the LasI cognate regulator LasR. Thus, RsaL and LasI-LasR (LasI/R) form a regulatory loop. Further studies revealed that RsaL is a global regulator which controls the expression of numerous genes through quorum sensing system dependent and independent pathways. However, whether RsaL is involved in antibiotic tolerance remains elusive. In this study, we found that the mutation of rsaL increased bacterial tolerance to ciprofloxacin and carbenicillin. Through motif search, gene expression analyses and electrophoretic mobility shift assays, we found that RsaL directly represses the expression of the narK1K2GHJI operon, which is involved in the tolerance to ciprofloxacin. We further demonstrated that the narK1K2GHJI operon is directly regulated by LasR. In combination, our study revealed a novel operon under the control of the RsaL, LasI/R regulatory loop.


Assuntos
Proteínas de Bactérias/genética , Carbenicilina/farmacologia , Ciprofloxacina/farmacologia , Tolerância a Medicamentos/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas Repressoras/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mutação , Óperon/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transativadores/genética , Transativadores/metabolismo
13.
Infect Immun ; 86(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29891544

RESUMO

The success of polysaccharide conjugate vaccines represents a major advance in the prevention of pneumococcal disease, but the power of these vaccines is limited by partial spectrum of coverage and high cost. Vaccines using immunoprotective proteins are a promising alternative type of pneumococcal vaccines. In this study, we constructed a library of antisera against conserved pneumococcal proteins predicted to be associated with cell surface or virulence using a combination of bioinformatic prediction and immunization of rabbits with recombinant proteins. Screening of the library by an opsonophagocytosis killing (OPK) assay identified the OPK-positive antisera, which represented 15 (OPK-positive) proteins. Further tests showed that virtually all of these OPK-positive antisera conferred passive protection against lethal infection of virulent pneumococci. More importantly, immunization with recombinant forms of three OPK-positive proteins (SP148, PBP2b, and ScpB), alone or in combination, conferred significant protection against lethal challenge of pneumococcal strains representing capsular serotypes 3, 4, and 6A in a mouse sepsis model. To our best knowledge, this work represents the first example in which novel vaccine candidates are successfully identified by the OPK screening. Our data have also provided further confirmation that the OPK activity may serve as a reliable in vitro surrogate for evaluating vaccine efficacy of pneumococcal proteins.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas Opsonizantes/imunologia , Fagocitose , Infecções Pneumocócicas/prevenção & controle , Proteínas Recombinantes/administração & dosagem , Streptococcus pneumoniae/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Biologia Computacional , Modelos Animais de Doenças , Feminino , Ensaios de Triagem em Larga Escala , Imunização , Imunização Passiva , Camundongos , Camundongos Endogâmicos BALB C , Infecções Pneumocócicas/imunologia , Vacinas Pneumocócicas/imunologia , Coelhos , Proteínas Recombinantes/imunologia , Streptococcus pneumoniae/patogenicidade
14.
Bioorg Med Chem Lett ; 27(18): 4440-4445, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811134

RESUMO

Human organic cation transporters (OCTs) represent an understudied neurotransmitter uptake mechanism for which no selective agents have yet been identified. Several neurotransmitters (e.g. serotonin, norepinephrine) are low-affinity substrates for these transporters, but possess higher affinity for other transporters (e.g. the serotonin or norepinephrine transporters; SERT and NET, respectively). We have identified a new class of OCT inhibitors with a phenylguanidine structural scaffold. Here, we examine the actions of a series of such compounds and report preliminary structure-activity relationships (SARs) - the first dedicated SAR study of OCT3 action. Initial results showed that the presence of a substituent on the phenyl ring, as well as its position, contributes to the phenylguanidines' inhibitory potency (IC50 values ranging from 2.2 to >450µM) at hOCT3. There is a trend towards enhanced inhibitory potency of phenylguanidines with increased lipophilic character and the size of the substituent at the phenyl 4-position, with the latter reaching a ceiling effect. The first PiPT-based hOCT3 homology models were generated and are in agreement with our biological data.


Assuntos
Guanidinas/farmacologia , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Relação Dose-Resposta a Droga , Guanidinas/síntese química , Guanidinas/química , Humanos , Estrutura Molecular , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Relação Estrutura-Atividade
15.
Mol Pharm ; 12(7): 2337-51, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26024817

RESUMO

In order to improve oral bioavailability of tacrolimus (FK506), a novel poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-ß-cyclodextrin amphiphilic copolymer (CD-PVM/MA) is developed, combining the bioadhesiveness of PVM/MA, P-glycoprotein (P-gp), and cytochrome P450-inhibitory effect of CD into one. The FK506-loaded nanoparticles (CD-PVM/MA-NPs) were obtained by solvent evaporation method. The physiochemical properties and intestinal absorption mechanism of FK506-loaded CD-PVM/MA-NPs were characterized, and the pharmacokinetic behavior was investigated in rats. FK506-loaded CD-PVM/MA-NPs exhibited nanometer-sized particles of 273.7 nm, with encapsulation efficiency as high as 73.3%. FK506-loaded CD-PVM/MA-NPs maintained structural stability in the simulated gastric fluid, and about 80% FK506 was released within 24 h in the simulated intestinal fluid. The permeability of FK506 was improved dramatically by CD-PVM/MA-NPs compared to its solution, probably due to the synergistic inhibition effect of P-gp and cytochrome P450 3A (CYP3A). The intestinal biodistribution of fluorescence-labeled CD-PVM/MA-NPs confirmed its good bioadhesion to the rat intestinal wall. Two endocytosis pathways, clathrin- and caveolae-mediated endocytosis, were involved in the cellular uptake of CD-PVM/MA-NPs. The important role of lymphatic transport in nanoparticles' access to the systemic circulation, about half of the contribution to oral bioavailability, was observed in mesenteric lymph duct ligated rats. The AUC0-24 of FK506 loaded in nanoparticles was enhanced up to 20-fold compared to FK506 solutions after oral administration. The present study suggested that the novel multifunctional CD-PVM/MA is a promising efficient oral delivery carrier for FK506, due to its ability in solubilization, inhibitory effects on both P-gp and CYP 3A, high bioadhesion, and sustained release capability.


Assuntos
Portadores de Fármacos/química , Maleatos/química , Polietilenos/química , Polímeros/química , Tacrolimo/administração & dosagem , Tacrolimo/farmacocinética , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Citocromo P-450 CYP3A/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/química , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Tacrolimo/química , Distribuição Tecidual
16.
Sci Total Environ ; 928: 172255, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599412

RESUMO

This study attempts to bridge the current research gaps related to the environmental burdens of low-rank coal (LRC) and sewage sludge (SS) co-pyrolysis potentially. The life cycle assessment (LCA), energy recovery and sensitivity analysis were investigated for different proportions of LRC and SS (co-)pyrolysis. The results showed that the LRC/SS pyrolysis mitigated the environmental burden with an average improvement of 43 % across 18 impact categories compared with SS pyrolysis. The best net values of energy and carbon credits were identified in SL-4 with -3.36 kWh/kg biochar and -1.10 CO2-eq/kg biochar, respectively. This study firstly proposed an optimal LRC/SS co-feed proportion at 3 to 7, which achieves the acceptable environmental burden and satisfactory energy recovery. Moreover, sensitivity analysis demonstrated this proportion is robust and adaptable. LRC/SS co-pyrolysis is a promising and sustainable alternative for SS disposal, which could meet the imperative of carbon emission mitigation and resource recycling.

17.
Antimicrob Agents Chemother ; 57(10): 5053-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23917312

RESUMO

According to the 2012 WHO global tuberculosis (TB) report (http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502_eng.pdf), the death rate for tuberculosis was over 1.4 million patients in 2011, with ∼9 million new cases diagnosed. Moreover, the frequency of comorbidity with human immunodeficiency virus (HIV) and with diabetes is on the rise, increasing the risk of these patients for experiencing drug-drug interactions (DDIs) due to polypharmacy. Ethambutol is considered a first-line antituberculosis drug. Ethambutol is an organic cation at physiological pH, and its major metabolite, 2,2'-(ethylenediimino)dibutyric acid (EDA), is zwitterionic. Therefore, we assessed the effects of ethambutol and EDA on the function of human organic cation transporter 1 (hOCT1), hOCT2, and hOCT3 and that of EDA on organic anion transporter 1 (hOAT1) and hOAT3. Potent inhibition of hOCT1- and hOCT2-mediated transport by ethambutol (50% inhibitory concentration [IC50] = 92.6 ± 10.9 and 253.8 ± 90.8 µM, respectively) was observed. Ethambutol exhibited much weaker inhibition of hOCT3 (IC50 = 4.1 ± 1.6 mM); however, significant inhibition (>80%) was observed at physiologically relevant concentrations in the gastrointestinal (GI) tract after oral dosing. EDA failed to exhibit any inhibitory effects that warranted further investigation. DDI analysis indicated a strong potential for ethambutol interaction on hOCT1 expressed in enterocytes and hepatocytes and on hOCT3 in enterocytes, which would alter absorption, distribution, and excretion of coadministered cationic drugs, suggesting that in vivo pharmacokinetic studies are necessary to confirm drug safety and efficacy. In particular, TB patients with coexisting HIV or diabetes might experience significant DDIs in situations of coadministration of ethambutol and clinical therapeutics known to be hOCT1/hOCT3 substrates (e.g., lamivudine or metformin).


Assuntos
Antituberculosos/farmacologia , Etambutol/farmacologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Células CHO , Cricetulus , Interações Medicamentosas , Enterócitos/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Lamivudina/farmacologia , Metformina/farmacologia
18.
Microbiol Spectr ; 11(1): e0323922, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36602339

RESUMO

Carbohydrate metabolism plays essential roles in energy generation and providing carbon skeletons for amino acid syntheses. In addition, carbohydrate metabolism has been shown to influence bacterial susceptibility to antibiotics and virulence. In this study, we demonstrate that citrate synthase gltA mutation can increase the expression of the type III secretion system (T3SS) genes and antibiotic tolerance in Pseudomonas aeruginosa. The stringent response is activated in the gltA mutant, and deletion of the (p)ppGpp synthetase gene relA restores the antibiotic tolerance and expression of the T3SS genes to wild-type level. We further demonstrate that the intracellular level of cAMP is increased by the stringent response in the gltA mutant, which increases the expression of the T3SS master regulator gene exsA. Overall, our results reveal an essential role of GltA in metabolism, antibiotic tolerance, and virulence, as well as a novel regulatory mechanism of the stringent response-mediated regulation of the T3SS in P. aeruginosa. IMPORTANCE Rising antimicrobial resistance imposes a severe threat to human health. It is urgent to develop novel antimicrobial strategies by understanding bacterial regulation of virulence and antimicrobial resistance determinants. The stringent response plays an essential role in virulence and antibiotic tolerance. Pseudomonas aeruginosa is an opportunistic pathogen that causes acute and chronic infections in humans. The bacterium produces an arsenal of virulence factors and is highly resistant to a variety of antibiotics. In this study, we provide evidence that citrate synthase GltA plays a critical role in P. aeruginosa metabolism and influences the antibiotic tolerance and virulence. We further reveal a role of the stringent response in the regulation of the antibiotic tolerance and virulence. The significance of this work is in elucidation of novel regulatory pathways that control both antibiotic tolerance and virulence in P. aeruginosa.


Assuntos
Infecções por Pseudomonas , Sistemas de Secreção Tipo III , Humanos , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Pseudomonas aeruginosa/metabolismo , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Infecções por Pseudomonas/microbiologia
19.
Microbiol Spectr ; 11(3): e0042623, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37039709

RESUMO

Polymyxins are currently the last-resort antibiotics for the treatment of multidrug-resistant Gram-negative bacterial infections. To expand the understanding of the intrinsic resistance mechanism against polymyxins, a laboratory strain of Pseudomonas aeruginosa PAO1 was subjected to serial passage in the presence of sublethal doses of polymyxin B over a period of 30 days. By whole-genome sequencing of successively isolated polymyxin B-resistant isolates, we identified a frameshift mutation (L183fs) in the mvfR gene that further increased polymyxin resistance in the pmrB mutant background. A ΔmvfR mutation alone showed higher tolerance to polymyxin B due to altered lipopolysaccharide (LPS) on the surface of bacterial cells, which decreases its outer membrane permeability. In the ΔmvfR mutant, polymyxin B treatment caused the upregulation of rfaD, the gene involved in LPS core oligosaccharide synthesis, which is responsible for polymyxin tolerance. To the best of our knowledge, this is the first report of mvfR mutation conferring polymyxin resistance in P. aeruginosa via increased integrity of bacterial outer membrane. IMPORTANCE Antibiotic resistance imposes a considerable challenge for the treatment of P. aeruginosa infections. Polymyxins are the last-resort antibiotics for the treatment of multidrug-resistant P. aeruginosa infections. Understanding the development and mechanisms of bacterial resistance to polymyxins may provide clues for the development of new or improved therapeutic strategies effective against P. aeruginosa. In this study, using an in vitro evolution assay in combination with whole-genome sequencing, we demonstrated that MvfR controls tolerance to polymyxin B by regulating the rfaD gene in P. aeruginosa. Our results reveal a novel mechanism employed by P. aeruginosa in the defense against polymyxin antibiotics.


Assuntos
Polimixina B , Pseudomonas aeruginosa , Polimixina B/farmacologia , Lipopolissacarídeos , Antibacterianos/farmacologia , Polimixinas/farmacologia , Testes de Sensibilidade Microbiana
20.
J Clin Pharmacol ; 63 Suppl 2: S65-S77, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37942906

RESUMO

Obesity, which is defined as having a body mass index of 30 kg/m2 or greater, has been recognized as a serious health problem that increases the risk of many comorbidities (eg, heart disease, stroke, and diabetes) and mortality. The high prevalence of individuals who are classified as obese calls for additional considerations in clinical trial design. Nevertheless, gaining a comprehensive understanding of how obesity affects the pharmacokinetics (PK), pharmacodynamics (PD), and efficacy of drugs proves challenging, primarily as obese patients are seldom selected for enrollment at the early stages of drug development. Over the past decade, model-informed drug development (MIDD) approaches have been increasingly used in drug development programs for obesity and its related diseases as they use and integrate all available sources and knowledge to inform and facilitate clinical drug development. This review summarizes the impact of obesity on PK, PD, and the efficacy of drugs and, more importantly, provides an overview of the use of MIDD approaches in drug development and regulatory decision making for patients with obesity: estimating PK, PD, and efficacy in specific dosing scenarios, optimizing dose regimen, and providing evidence for seeking new indication(s). Recent review cases using MIDD approaches to support dose selection and provide confirmatory evidence for effectiveness for patients with obesity, including pediatric patients, are discussed. These examples demonstrate the promise of MIDD as a valuable tool in supporting clinical trial design during drug development and facilitating regulatory decision-making processes for the benefit of patients with obesity.


Assuntos
Desenvolvimento de Medicamentos , Obesidade , Humanos , Criança , Obesidade/tratamento farmacológico , Índice de Massa Corporal , Protocolos Clínicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA