Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 152: 109775, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019126

RESUMO

Bacterial intestinal inflammation frequently occurs in cultured fish. Nevertheless, research on intestinal barrier dysfunction in the process of intestinal inflammation is deficient. In this study, we explored the changes of intestinal inflammation induced by Aeromonas hydrophila (A. hydrophila) in snakehead and the relationship between intestinal barrier and inflammation. Snakehead [(13.05 ± 2.39) g] were infected via anus with A. hydrophila. Specimens were collected for analysis at 0, 1, 3, 7 and 21 d post-injection. The results showed that with the increase of exposure time, the hindgut underwent stages of normal function, damage, damage deterioration, repair and recovery. Relative to 0 d, the levels of IL-1ß and TNF-α in serum, and the expression of nod1, tlr1, tlr5, nf-κb, tnf-α and il-1ß in intestine were significantly increased, and showed an upward then downward pattern over time. However, the expression of tlr2 and il-10 were markedly decreased, and showed the opposite trend. In addition, with the development of intestinal inflammation, the diversity and richness of species, and the levels of phylum and genus in intestine were obviously altered. The levels of trypsin, LPS, AMS, T-SOD, CAT, GPx, AKP, LZM and C3 in intestine were markedly reduced, and displayed a trend of first decreasing and then rebounding. The ultrastructure observation showed that the microvilli and tight junction structure of intestinal epithelial cells experienced normal function initially, then damage, and finally recovery over time. The expression of claudin-3 and zo-1 in intestine were significantly decreased, and showed a trend of first decreasing and then rebounding. Conversely, the expression of mhc-i, igm, igt and pigr in intestine were markedly increased, and displayed a trend of increasing first and then decreasing. The above results revealed the changes in intestinal barrier during the occurrence and development of intestinal inflammation, which provided a theoretical basis for explaining the relationship between the two.


Assuntos
Aeromonas hydrophila , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Intestinos , Animais , Aeromonas hydrophila/fisiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Peixes/imunologia , Peixes/microbiologia , Microbioma Gastrointestinal , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Inflamação/imunologia , Inflamação/veterinária , Mucosa Intestinal/imunologia , Intestinos/imunologia , Intestinos/patologia
2.
ACS Appl Mater Interfaces ; 16(4): 5302-5307, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38156405

RESUMO

Atomically thin oxide semiconductors are emerging as potential materials for their potentiality in monolithic 3D integration and sensor applications. In this study, a charge transfer method employing viologen, an organic compound with exceptional reduction potential among n-type organics, is presented to modulate the carrier concentration in atomically thin In2O3 without the need of annealing. This study highlights the critical role of channel thickness on doping efficiency, revealing that viologen charge transfer doping is increasingly pronounced in thinner channels owing to their increased surface-to-volume ratio. Upon viologen doping, an electron sheet density of 6.8 × 1012 cm-2 is achieved in 2 nm In2O3 back gate device while preserving carrier mobility. Moreover, by the modification of the functional groups, viologens can be conveniently removed with acetone and an ultrasonic cleaner, making the viologen treatment a reversible process. Based on this doping scheme, we demonstrate an n-type metal oxide semiconductor inverter with viologen-doped In2O3, exhibiting a voltage gain of 26 at VD = 5 V. This complementary pairing of viologen and In2O3 offers ease of control over the carrier concentration, making it suitable for the next-generation electronic applications.

3.
Nat Commun ; 14(1): 5243, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640725

RESUMO

The scaling of transistors with thinner channel thicknesses has led to a surge in research on two-dimensional (2D) and quasi-2D semiconductors. However, modulating the threshold voltage (VT) in ultrathin transistors is challenging, as traditional doping methods are not readily applicable. In this work, we introduce a optical-thermal method, combining ultraviolet (UV) illumination and oxygen annealing, to achieve broad-range VT tunability in ultrathin In2O3. This method can achieve both positive and negative VT tuning and is reversible. The modulation of sheet carrier density, which corresponds to VT shift, is comparable to that obtained using other doping and capacitive charging techniques in other ultrathin transistors, including 2D semiconductors. With the controllability of VT, we successfully demonstrate the realization of depletion-load inverter and multi-state logic devices, as well as wafer-scale VT modulation via an automated laser system, showcasing its potential for low-power circuit design and non-von Neumann computing applications.

4.
Nanoscale Res Lett ; 17(1): 30, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244784

RESUMO

With the increasing demand of silicon carbide (SiC) power devices that outperform the silicon-based devices, high cost and low yield of SiC manufacturing process are the most urgent issues yet to be solved. It has been shown that the performance of SiC devices is largely influenced by the presence of so-called killer defects, formed during the process of crystal growth. In parallel to the improvement of the growth techniques for reducing defect density, a post-growth inspection technique capable of identifying and locating defects has become a crucial necessity of the manufacturing process. In this review article, we provide an outlook on SiC defect inspection technologies and the impact of defects on SiC devices. This review also discusses the potential solutions to improve the existing inspection technologies and approaches to reduce the defect density, which are beneficial to mass production of high-quality SiC devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA