Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 11(26): 15738-15747, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35481169

RESUMO

A green synthesis method is proposed for the preparation of nitrogen-doped multiporous carbons (denoted as N-MPCs) from water-caltrop shell (WCS) using eggshell waste as both a nitrogen-dopant and an activating agent. It is shown that the surface area, porosity, yield and nitrogen content of the as-prepared N-MPCs can be easily controlled by adjusting the activation temperature. Moreover, in oxygen reduction reaction (ORR) tests performed in O2-saturated 0.1 M KOH(aq) electrolyte containing 1.0 M methanol, the N-MPC catalysts show a high ORR stability and good resistance to methanol corrosion. In addition, as a cathode material in Al-air battery tests, the N-MPCs achieve a power density of 16 mW g-1 in a saturated NaCl(aq) electrolyte. Overall, the results show that the N-MPCs have a promising potential as a green and sustainable material for ORR catalysis applications.

3.
ACS Omega ; 5(18): 10626-10632, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32426621

RESUMO

In this study, an economic, sustainable, and green synthesis method of multiporous carbons from agricultural waste, water caltrop shell (denoted as WCS), was presented. To prepare the WCS biochar, the dried WCS was first carbonized to a microporous carbon with a surface area of around 230 m2 g-1 by using a top-lit-updraft method. Then, the microporous WCS biochar was directly mixed with an appropriate amount of ZnO nanoparticles and KOH as activating agents via a solvent-free physical blending route. After further activation at 900 °C, the resulted carbons possess both micropores and mesopores that were named as WCS multiporous carbons. The carbon yield of the prepared WCS multiporous carbons with high surface area in the range of 1175-1537 m2 g-1 is up to 50%. Furthermore, the micropore/mesopore surface area ratio can be simply tuned by controlling the ZnO content. For supercapacitor applications, the as-prepared WCS multiporous carbon electrodes showed high specific capacitance (128 F g-1 at 5 mV s-1) with a good retention rate at 500 mV s-1 scan rate (>60% compared to the capacitance at 5 mV s-1) and low Ohmic resistance in a 1.0 M LiClO4/PC electrolyte. In addition to the ZnO nanoparticles, CaCO3 nanoparticles with low environmental impact were also used to prepare the WCS multiporous carbons. The assembled supercapacitors also demonstrate high specific capacitance (102 F g-1 at 5 mV s-1) and good retention rate (∼70%).

4.
Dalton Trans ; 47(25): 8346-8355, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29896594

RESUMO

In this work, we present a facile preparation of a paper-based glucose assay for rapid, sensitive, and quantitative measurement of glucose in blood plasma and urine. Two copper phosphorescent complexes [Cu(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)(2,6-dimethylphenylisocyanide)2][B(C6H3(CF3)2)4] (Cu1) and [Cu(2,9-dimethyl-1,10-phenanthroline)(2,6-dimethylphenylisocyanide)2][B(C6H3(CF3)2)4] (Cu2) and a new silver congener [Ag(P3)CNAg(P3)][B(C6H3(CF3)2)4] (Ag3) (P3 = PPh2C6H4-PPh-C6H4PPh2 [bis(o-diphenylphosphinophenyl)phenylphosphine]) have been synthesized and their oxygen sensing abilities were investigated. The dimetallic phosphine-based Ag3 complex, having a high oxygen sensing ability, was employed as an efficient signal transducer in enzymatic reactions to recognize blood plasma glucose and urine glucose, which provided a wide linear response for a concentration range between 1.0 and 35 mM and a rapid response, with a limit of detection (LOD) of 0.09 mM for glucose. In practical application, this Ag3 paper-based device offers great analytical reliability and accuracy upon monitoring glucose concentrations in blood plasma.


Assuntos
Técnicas Biossensoriais , Glicemia/análise , Complexos de Coordenação/química , Glicosúria/urina , Prata/química , Cromatografia em Papel , Complexos de Coordenação/síntese química , Cobre/química , Humanos , Limite de Detecção , Luminescência , Oxigênio/química , Fenantrolinas/química , Fosfinas/química
5.
Dalton Trans ; 46(21): 6985-6993, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28513731

RESUMO

In this work, we present a Ag@Au nanoprism-metal-organic framework-paper based glucose sensor for rapid, sensitive, single-use and quantitative glucose determination in human serum. To achieve painless measurement of glucose with a non-invasive detection methodology, this biosensor was further tested in human urine. In this approach, a new hybrid-Ag@Au nanoprism loaded in close proximity to micrometer sized coordination polymers as phosphorescent luminophores significantly enhanced the emission intensity due to metal-enhanced phosphorescence and worked as reaction sites to support more dissolved oxygen. Reports of enhanced phosphorescence intensity are relatively rare, especially at room temperature. The true enhancement factor of Ag@Au-phosphorescent metal-organic frameworks on paper was deduced to be 110-fold, making it a better optical type glucose meter. The results demonstrate the validity of the intensity enhancement effect of the excitation of the overlap of the emission band of a luminophore with the surface plasmon resonance band of Ag@Au nanoprisms. Ag@Au nanoprisms were used not only to improve the detection limit of glucose sensing but also to extend the glucose sensing range by enhancing the oxygen oxidation efficiency. The oxidation of glucose as glucose oxidase is accompanied by oxygen consumption, which increases the intensity of the phosphorescence emission. The turn-on type paper-based biosensor exhibits a rapid response (0.5 s), a low detection limit (0.038 mM), and a wide linear range (30 mM to 0.05 mM), as well as good anti-interference, long-term longevity and reproducibility. Finally, the biosensor was successfully applied to the determination of glucose in human serum and urine.


Assuntos
Glucose/análise , Ouro/química , Nanopartículas Metálicas/química , Estruturas Metalorgânicas/química , Prata/química , Técnicas Biossensoriais , Glicemia/análise , Cloreto de Cálcio/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Humanos , Limite de Detecção , Oxirredução , Papel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA