Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Environ Microbiol ; 26(2): e16572, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195068

RESUMO

Factors regulating the diversity and composition of soil microbial communities include soil properties, land cover and climate. How these factors interact at large scale remains poorly investigated. Here, we used an extensive dataset including 715 locations from 24 European countries to investigate the interactive effects of climatic region, land cover and pH on soil bacteria and fungi. We found that differences in microbial diversity and community composition between land cover types depended on the climatic region. In Atlantic, Boreal and Continental regions, microbial richness was higher in croplands and grasslands than woodlands while richness in Mediterranean areas did not vary significantly among land cover types. These differences were further related to soil pH, as a driver of bacterial and fungal richness in most climatic regions, but the interaction of pH with land cover depended on the region. Microbial community composition differed the most between croplands and woodlands in all regions, mainly due to differences in pH. In the Mediterranean region, bacterial communities in woodlands and grasslands were the most similar, whereas in other regions, grassland and cropland-associated bacteria showed more similarity. Overall, we showed that key factors interact in shaping soil microbial communities in a climate-dependent way at large scale.


Assuntos
Microbiologia do Solo , Solo , Solo/química , Bactérias/genética , Florestas , Concentração de Íons de Hidrogênio , Pradaria
2.
Glob Chang Biol ; 30(1): e16992, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37902125

RESUMO

The EU Soil Strategy 2030 aims to increase soil organic carbon (SOC) in agricultural land to enhance soil health and support biodiversity as well as to offset greenhouse gas emissions through soil carbon sequestration. Therefore, the quantification of current SOC stocks and the spatial identification of the main drivers of SOC changes is paramount in the preparation of agricultural policies aimed at enhancing the resilience of agricultural systems in the EU. In this context, changes of SOC stocks (Δ SOCs) for the EU + UK between 2009 and 2018 were estimated by fitting a quantile generalized additive model (qGAM) on data obtained from the revisited points of the Land Use/Land Cover Area Frame Survey (LUCAS) performed in 2009, 2015 and 2018. The analysis of the partial effects derived from the fitted qGAM model shows that land use and land use change observed in the 2009, 2015 and 2018 LUCAS campaigns (i.e. continuous grassland [GGG] or cropland [CCC], conversion grassland to cropland (GGC or GCC) and vice versa [CGG or CCG]) was one of the main drivers of SOC changes. The CCC was the factor that contributed to the lowest negative change on Δ SOC with an estimated partial effect of -0.04 ± 0.01 g C kg-1 year-1 , while the GGG the highest positive change with an estimated partial effect of 0.49 ± 0.02 g C kg-1 year-1 . This confirms the C sequestration potential of converting cropland to grassland. However, it is important to consider that local soil and environmental conditions may either diminish or enhance the grassland's positive effect on soil C storage. In the EU + UK, the estimated current (2018) topsoil (0-20 cm) SOC stock in agricultural land below 1000 m a.s.l was 9.3 Gt, with a Δ SOC of -0.75% in the period 2009-2018. The highest estimated SOC losses were concentrated in central-northern countries, while marginal losses were observed in the southeast.


Assuntos
Carbono , Solo , Pradaria , Agricultura , Sequestro de Carbono , Produtos Agrícolas
3.
Glob Chang Biol ; 30(6): e17354, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822629

RESUMO

Wildfires directly emit 2.1 Pg carbon (C) to the atmosphere annually. The net effect of wildfires on the C cycle, however, involves many interacting source and sink processes beyond these emissions from combustion. Among those, the role of post-fire enhanced soil organic carbon (SOC) erosion as a C sink mechanism remains essentially unquantified. Wildfires can greatly enhance soil erosion due to the loss of protective vegetation cover and changes to soil structure and wettability. Post-fire SOC erosion acts as a C sink when off-site burial and stabilization of C eroded after a fire, together with the on-site recovery of SOC content, exceed the C losses during its post-fire transport. Here we synthesize published data on post-fire SOC erosion and evaluate its overall potential to act as longer-term C sink. To explore its quantitative importance, we also model its magnitude at continental scale using the 2017 wildfire season in Europe. Our estimations show that the C sink ability of SOC water erosion during the first post-fire year could account for around 13% of the C emissions produced by wildland fires. This indicates that post-fire SOC erosion is a quantitatively important process in the overall C balance of fires and highlights the need for more field data to further validate this initial assessment.


Assuntos
Ciclo do Carbono , Incêndios Florestais , Erosão do Solo , Carbono/análise , Europa (Continente) , Solo/química , Sequestro de Carbono , Incêndios , Modelos Teóricos
4.
Glob Chang Biol ; 30(1): e17108, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273551

RESUMO

Future phosphorus (P) shortages could seriously affect terrestrial productivity and food security. We investigated the changes in topsoil available P (AP) and total P (TP) in China's forests, grasslands, paddy fields, and upland croplands during the 1980s-2010s based on substantial repeated soil P measurements (63,220 samples in the 1980s, 2000s, and 2010s) and machine learning techniques. Between the 1980s and 2010s, total soil AP stock increased with a small but significant rate of 0.13 kg P ha-1 year-1 , but total soil TP stock declined substantially (4.5 kg P ha-1 year-1 ) in the four ecosystems. We quantified the P budgets of soil-plant systems by harmonizing P fluxes from various sources for this period. Matching trends of soil contents over the decades with P budgets and fluxes, we found that the P-surplus in cultivated soils (especially in upland croplands) might be overestimated due to the great soil TP pool compared to fertilization and the substantial soil P losses through plant uptake and water erosion that offset the P additions. Our findings of P-deficit in China raise the alarm on the sustainability of future biomass production (especially in forests), highlight the urgency of P recycling in croplands, and emphasize the critical role of country-level basic data in guiding sound policies to tackle the global P crises.


Assuntos
Ecossistema , Solo , Fósforo/análise , Florestas , Plantas , China
5.
Environ Res ; 245: 118014, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38151146

RESUMO

The use of cover crops (CCs) is a promising cropland management practice with multiple benefits, notably in reducing soil erosion and increasing soil organic carbon (SOC) storage. However, the current ability to represent these factors in land surface models remains limited to small scales or simplified and lumped approaches due to the lack of a sediment-carbon erosion displacement scheme. This precludes a thorough understanding of the consequences of introducing a CC into agricultural systems. In this work, this problem was addressed in two steps with the spatially distributed CE-DYNAM model. First, the historical effect of soil erosion, transport, and deposition on the soil carbon budget at a continental scale in Europe was characterized since the early industrial era, using reconstructed climate and land use forcings. Then, the impact of two distinct policy-oriented scenarios for the introduction of CCs were evaluated, covering the European cropping systems where surface erosion rates or nitrate susceptibility are critical. The evaluation focused on the increase in SOC storage and the export of particulate organic carbon (POC) to the oceans, compiling a continental-scale carbon budget. The results indicated that Europe exported 1.95 TgC/year of POC to the oceans in the last decade, and that CCs can contribute to reducing this amount while increasing SOC storage. Compared to the simulation without CCs, the additional rate of SOC storage induced by CCs peaked after 10 years of their adoption, followed by a decrease, and the cumulative POC export reduction stabilized after around 13 years. The findings indicate that the impacts of CCs on SOC and reduced POC export are persistent regardless of their spatial allocation adopted in the scenarios. Together, the results highlight the importance of taking the temporal aspect of CC adoption into account and indicate that CCs alone are not sufficient to meet the targets of the 4‰ initiative. Despite some known model limitations, which include the lack of feedback of erosion on the net primary productivity and the representation of carbon fluxes with an emulator, the current work constitutes the first approach to successfully couple a distributed routing scheme of eroded carbon to a land carbon model emulator at a reasonably high resolution and continental scale. SHORT ABSTRACT: A spatially distributed model coupling erosion, transport, and deposition to the carbon cycle was developed. Then, it was used to simulate the impact of cover crops on both erosion and carbon, to show that cover crops can simultaneously increase organic carbon storage and reduce particulate organic carbon export to the oceans. The results seemed persistent regardless of the spatial distribution of cover crops.


Assuntos
Carbono , Solo , Conservação dos Recursos Naturais , Agricultura/métodos , Ciclo do Carbono , Poeira , Produtos Agrícolas
6.
Environ Res ; 248: 118319, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295975

RESUMO

New policy developments have emerged in relation to soil conservation after 2020. The Common Agricultural Policy (CAP) 2023-2027, the proposal for a Soil Monitoring Law and the mission 'A Soil Deal for Europe' have shaped a new policy framework at EU level, which requires updated assessments on soil erosion and land degradation. The EU Soil Observatory (EUSO) successfully organised a scientific workshop on 'Soil erosion for the EU' in June 2022. The event has seen the participation of more than 330 people from 63 countries, addressing important topics such as (i) management practices, (ii) large scale modelling, (iii) the importance of sediments in nutrient cycle, (vi) the role of landslides and (v) laying the foundations for early career scientists. As a follow up, among the 120 abstracts submitted in the workshop, we received fifteen manuscripts, out of which nine were selected for publication in the present special issue. In this editorial, we summarize the major challenges that the soil erosion research community faces in relation to supporting the increasing role of soils in the EU Green Deal.


Assuntos
Erosão do Solo , Solo , Humanos , Agricultura , Europa (Continente) , Formulação de Políticas , Conservação dos Recursos Naturais
7.
Glob Chang Biol ; 29(19): 5706-5719, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37449367

RESUMO

Soil eukaryotes play a crucial role in maintaining ecosystem functions and services, yet the factors driving their diversity and distribution remain poorly understood. While many studies focus on some eukaryotic groups (mostly fungi), they are limited in their spatial scale. Here, we analyzed an unprecedented amount of observational data of soil eukaryomes at continental scale (787 sites across Europe) to gain further insights into the impact of a wide range of environmental conditions (climatic and edaphic) on their community composition and structure. We found that the diversity of fungi, protists, rotifers, tardigrades, nematodes, arthropods, and annelids was predominantly shaped by ecosystem type (annual and permanent croplands, managed and unmanaged grasslands, coniferous and broadleaved woodlands), and higher diversity of fungi, protists, nematodes, arthropods, and annelids was observed in croplands than in less intensively managed systems, such as coniferous and broadleaved woodlands. Also in croplands, we found more specialized eukaryotes, while the composition between croplands was more homogeneous compared to the composition of other ecosystems. The observed high proportion of overlapping taxa between ecosystems also indicates that DNA has accumulated from previous land uses, hence mimicking the land transformations occurring in Europe in the last decades. This strong ecosystem-type influence was linked to soil properties, and particularly, soil pH was driving the richness of fungi, rotifers, and annelids, while plant-available phosphorus drove the richness of protists, tardigrades, and nematodes. Furthermore, the soil organic carbon to total nitrogen ratio crucially explained the richness of fungi, protists, nematodes, and arthropods, possibly linked to decades of agricultural inputs. Our results highlighted the importance of long-term environmental variables rather than variables measured at the time of the sampling in shaping soil eukaryotic communities, which reinforces the need to include those variables in addition to ecosystem type in future monitoring programs and conservation efforts.


Assuntos
Artrópodes , Ecossistema , Animais , Solo/química , Eucariotos , Carbono , Biodiversidade , Europa (Continente) , Fungos , Microbiologia do Solo
8.
Conserv Biol ; 37(3): e14040, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36424859

RESUMO

Global efforts to deliver internationally agreed goals to reduce carbon emissions, halt biodiversity loss, and retain essential ecosystem services have been poorly integrated. These goals rely in part on preserving natural (e.g., native, largely unmodified) and seminatural (e.g., low intensity or sustainable human use) forests, woodlands, and grasslands. To show how to unify these goals, we empirically derived spatially explicit, quantitative, area-based targets for the retention of natural and seminatural (e.g., native) terrestrial vegetation worldwide. We used a 250-m-resolution map of natural and seminatural vegetation cover and, from this, selected areas identified under different international agreements as being important for achieving global biodiversity, carbon, soil, and water targets. At least 67 million km2 of Earth's terrestrial vegetation (∼79% of the area of vegetation remaining) required retention to contribute to biodiversity, climate, soil, and freshwater conservation objectives under 4 United Nations' resolutions. This equates to retaining natural and seminatural vegetation across at least 50% of the total terrestrial (excluding Antarctica) surface of Earth. Retention efforts could contribute to multiple goals simultaneously, especially where natural and seminatural vegetation can be managed to achieve cobenefits for biodiversity, carbon storage, and ecosystem service provision. Such management can and should co-occur and be driven by people who live in and rely on places where natural and sustainably managed vegetation remains in situ and must be complemented by restoration and appropriate management of more human-modified environments if global goals are to be realized.


Retención de la vegetación natural para salvaguardar la biodiversidad y la humanidad Resumen Hoy en día hay muy poca integración de los esfuerzos mundiales para alcanzar los objetivos internacionales de reducción de las emisiones de carbono, impedimento de la pérdida de biodiversidad y conservación de los servicios ambientales esenciales. Estos objetivos dependen parcialmente de la conservación de los bosques, selvas y praderas naturales (por ejemplo, nativos y en su mayoría sin alteraciones) y seminaturales (por ejemplo, de uso humano sostenible o de baja intensidad). Obtuvimos de manera empírica objetivos espacialmente explícitos, cuantitativos y basados en áreas para la conservación de la vegetación terrestre natural y seminatural (por ejemplo, nativa) en todo el mundo para mostrar cómo unificar los objetivos internacionales. Usamos un mapa de 250 m de resolución de la cubierta vegetal natural y seminatural y, a partir de él, seleccionamos las áreas identificadas como importantes en diferentes acuerdos internacionales para alcanzar los objetivos globales de biodiversidad, carbono, suelo y agua. Al menos 67 millones de km2 de la vegetación terrestre de la Tierra (∼79% de la superficie de vegetación restante) requieren ser conservados para contribuir a los objetivos de conservación de la biodiversidad, el clima, el suelo y el agua dulce en virtud de cuatro de las resoluciones de las Naciones Unidas. Esto equivale a conservar la vegetación natural y seminatural en al menos el 50% de la superficie terrestre total de la Tierra (sin contar a la Antártida). Los esfuerzos de retención podrían contribuir a alcanzar múltiples objetivos simultáneamente, especialmente en donde la vegetación natural y seminatural puede gestionarse para lograr beneficios colaterales para la biodiversidad, el almacenamiento de carbono y la provisión de servicios ambientales. Esta gestión puede y debe ser impulsada y llevada a cabo por las personas que viven en y dependen de los lugares donde la vegetación natural y gestionada de forma sostenible permanece in situ y debe complementarse con la restauración y la gestión adecuada de entornos modificados por el hombre si se quieren alcanzar los objetivos globales.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Biodiversidade , Florestas , Regiões Antárticas
9.
Proc Natl Acad Sci U S A ; 117(36): 21994-22001, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839306

RESUMO

Soil erosion is a major global soil degradation threat to land, freshwater, and oceans. Wind and water are the major drivers, with water erosion over land being the focus of this work; excluding gullying and river bank erosion. Improving knowledge of the probable future rates of soil erosion, accelerated by human activity, is important both for policy makers engaged in land use decision-making and for earth-system modelers seeking to reduce uncertainty on global predictions. Here we predict future rates of erosion by modeling change in potential global soil erosion by water using three alternative (2.6, 4.5, and 8.5) Shared Socioeconomic Pathway and Representative Concentration Pathway (SSP-RCP) scenarios. Global predictions rely on a high spatial resolution Revised Universal Soil Loss Equation (RUSLE)-based semiempirical modeling approach (GloSEM). The baseline model (2015) predicts global potential soil erosion rates of [Formula: see text] Pg yr-1, with current conservation agriculture (CA) practices estimated to reduce this by ∼5%. Our future scenarios suggest that socioeconomic developments impacting land use will either decrease (SSP1-RCP2.6-10%) or increase (SSP2-RCP4.5 +2%, SSP5-RCP8.5 +10%) water erosion by 2070. Climate projections, for all global dynamics scenarios, indicate a trend, moving toward a more vigorous hydrological cycle, which could increase global water erosion (+30 to +66%). Accepting some degrees of uncertainty, our findings provide insights into how possible future socioeconomic development will affect soil erosion by water using a globally consistent approach. This preliminary evidence seeks to inform efforts such as those of the United Nations to assess global soil erosion and inform decision makers developing national strategies for soil conservation.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Deslizamentos de Terra/estatística & dados numéricos , Água/química , Mudança Climática/economia , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/tendências , Monitoramento Ambiental , Atividades Humanas , Humanos , Deslizamentos de Terra/economia , Fatores Socioeconômicos , Solo/química
10.
Glob Chang Biol ; 27(21): 5407-5410, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34480389

RESUMO

We propose a way to synthesize different approaches to globally map land degradation by combining vegetation and soil indicators into a consistent framework for assessing land degradation as an environmental 'debt'. our combined approach reveals a broader lens for land degradation through global change, in particular, identifying hot-spots for the different kinds of land degradation.


Assuntos
Monitoramento Ambiental , Solo
11.
Environ Sci Technol ; 55(11): 7327-7334, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34009978

RESUMO

Copper-based fungicides (Cuf) are used in European (EU) vineyards to prevent fungal diseases. Soil physicochemical properties locally govern the variation of the total copper content (Cut) in EU vineyards. However, variables controlling Cut distribution at a larger scale are poorly known. Here, machine learning techniques were used to identify governing variables and to predict the Cut distribution in EU vineyards. Precipitation, aridity and soil organic carbon are key variables explaining together 45% of Cut distribution across EU vineyards. This underlines the effect of both climate and soil properties on Cut distribution. The average net export of Cu at the EU scale is 0.29 kg Cu ha-1, which is 2 orders of magnitude less than the net accumulation of Cu (24.8 kg Cu ha-1). Four scenarios of Cuf application were compared. The current EU regulation with a maximum of 4 kg Cu ha-1 year-1 may increase by 2% of the EU vineyard area, exceeding the predicted no-effect concentration (PNEC) in soil in the next 100 years. Overall, our results highlight the vineyard areas requiring specific remediation measures and strategies of Cuf use to manage a trade-off between pest control and soil and water contamination.


Assuntos
Poluentes do Solo , Solo , Agricultura , Carbono , Cobre/análise , Fazendas , Poluentes do Solo/análise
12.
Environ Res ; 201: 111556, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34171371

RESUMO

Mercury (Hg) is one of the most dangerous pollutants worldwide. In the European Union (EU), we recently estimated the Hg distribution in topsoil using 21,591 samples and a series of geo-physical inputs. In this manuscript, we investigate the impact of mining activities, chrol-alkali industries and other diffuse pollution sources as primary anthropogenic sources of Hg hotspots in the EU. Based on Hg measured soil samples, we modelled the Hg pool in EU topsoils, which totals about 44.8 Gg, with an average density of 103 g ha-1. As a following step, we coupled the estimated Hg stocks in topsoil with the pan-European assessment of soil loss due to water erosion and sediment distribution. In the European Union and UK, we estimated that about 43 Mg Hg yr-1 are displaced by water erosion and c. a. 6 Mg Hg yr-1 are transferred with sediments to river basins and eventually released to coastal Oceans. The Mediterranean Sea receives almost half (2.94 Mg yr-1) of the Hg fluxes to coastal oceans and it records the highest quantity of Hg sediments. This is the result of elevated soil Hg concentration and high erosion rates in the catchments draining into the Mediterranean Sea. This work contributes to new knowledge in support of the policy development in the EU on the Zero Pollution Action Plan and the Sustainable Development Goal (SDGs) 3.9 and 14.1, which both have as an objective to reduce soil pollution by 2030.


Assuntos
Mercúrio , União Europeia , Mar Mediterrâneo , Solo , Desenvolvimento Sustentável
13.
Environ Res ; 194: 110697, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33428912

RESUMO

While agricultural systems are a major pillar in global food security, their productivity is currently threatened by many environmental issues triggered by anthropogenic climate change and human activities, such as land degradation. However, the planetary spatial footprint of land degradation processes on arable lands, which can be considered a major component of global agricultural systems, is still insufficiently well understood. This study analyzes the land degradation footprint on global arable lands, using complex geospatial data on certain major degradation processes, i.e. aridity, soil erosion, vegetation decline, soil salinization and soil organic carbon decline. By applying geostatistical techniques that are representative for identifying the incidence of the five land degradation processes in global arable lands, results showed that aridity is by far the largest singular pressure for these agricultural systems, affecting ~40% of the arable lands' area, which cover approximately 14 million km2 globally. It was found that soil erosion is another major degradation process, the unilateral impact of which affects ~20% of global arable systems. The results also showed that the two degradation processes simultaneously affect an additional ~7% of global arable lands, which makes this synergy the most common form of multiple pressure of land degradative conditions across the world's arable areas. The absolute statistical data showed that India, the United States, China, Brazil, Argentina, Russia and Australia are the most vulnerable countries in the world to the various pathways of arable land degradation. Also, in terms of percentages, statistical observations showed that African countries are the most heavily affected by arable system degradation. This study's findings can be useful for prioritizing agricultural management actions that can mitigate the negative effects of the two degradation processes or of others that currently affect many arable systems across the planet.


Assuntos
Carbono , Solo , África , Agricultura , Argentina , Austrália , Brasil , China , Humanos , Índia , Federação Russa
14.
Environ Res ; 172: 470-474, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30844572

RESUMO

New challenges and policy developments after 2015 (among others, the Common Agricultural Policy (CAP), Sustainable Development Goals (SDGs)) are opportunities for soil scientists and soil erosion modellers to respond with more accurate assessments and solutions as to how to reduce soil erosion and furthermore, how to reach Zero Net Land Degradation targets by 2030. This special issue includes papers concerning the use of fallout for estimating soil erosion, new wind erosion modelling techniques, the importance of extreme events (forest fires, intense rainfall) in accelerating soil erosion, management practices to reduce soil erosion in vineyards, the impact of wildfires in erosion, updated methods for estimating soil erodibility, comparisons between sediment distribution models, the application of the WaTEM/SEDEM model in Europe, a review of the G2 model and a proposal for a land degradation modelling approach. New data produced from field surveys such as LUCAS topsoil and the increasing availability of remote sensing data may facilitate the work of erosion modellers. Finally, better integration with other soil related disciplines (soil carbon, biodiversity, compaction and contamination) and Earth Systems modelling is the way forward for a new generation of erosion process models.


Assuntos
Agricultura , Modelos Teóricos , Formulação de Políticas , Solo , Europa (Continente)
15.
Geoderma ; 355: 113912, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31798185

RESUMO

This paper presents the second part of the mapping of topsoil properties based on the Land Use and Cover Area frame Survey (LUCAS). The first part described the physical properties (Ballabio et al., 2016) while this second part includes the following chemical properties: pH, Cation Exchange Capacity (CEC), calcium carbonates (CaCO3), C:N ratio, nitrogen (N), phosphorus (P) and potassium (K). The LUCAS survey collected harmonised data on changes in land cover and the state of land use for the European Union (EU). Among the 270,000 land use and cover observations selected for field visit, approximately 20,000 soil samples were collected in 24 EU Member States in 2009 together with more than 2000 samples from Bulgaria and Romania in 2012. The chemical properties maps for the European Union were produced using Gaussian process regression (GPR) models. GPR was selected for its capacity to assess model uncertainty and the possibility of adding prior knowledge in the form of covariance functions to the model. The derived maps will establish baselines that will help monitor soil quality and provide guidance to agro-environmental research and policy developments in the European Union.

16.
Glob Chang Biol ; 24(8): 3283-3284, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29971951

RESUMO

This study combines two unprecedentedly high resolution (250 × 250 m) maps of soil erosion (inter-rill and rill processes) and soil organic carbon to calculate a global estimate of erosion-induced organic carbon (C) displacement. The results indicate a gross C displacement by soil erosion of 2.5-0.3+0.5 Pg C/year. The greatest share of displaced C (64%) comes from seminatural lands and forests. This suggests that lateral C transfer from erosion in noncroplands may play a more important role than previously assumed.


Assuntos
Agricultura/métodos , Carbono/análise , Florestas , Solo/química
17.
Environ Res ; 161: 256-267, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29169100

RESUMO

A detailed description of the G2 erosion model is presented, in order to support potential users. G2 is a complete, quantitative algorithm for mapping soil loss and sediment yield rates on month-time intervals. G2 has been designed to run in a GIS environment, taking input from geodatabases available by European or other international institutions. G2 adopts fundamental equations from the Revised Universal Soil Loss Equation (RUSLE) and the Erosion Potential Method (EPM), especially for rainfall erosivity, soil erodibility, and sediment delivery ratio. However, it has developed its own equations and matrices for the vegetation cover and management factor and the effect of landscape alterations on erosion. Provision of month-time step assessments is expected to improve understanding of erosion processes, especially in relation to land uses and climate change. In parallel, G2 has full potential to decision-making support with standardised maps on a regular basis. Geospatial layers of rainfall erosivity, soil erodibility, and terrain influence, recently developed by the Joint Research Centre (JRC) on a European or global scale, will further facilitate applications of G2.


Assuntos
Conservação dos Recursos Naturais , Sistemas de Informação Geográfica , Modelos Teóricos , Algoritmos , Monitoramento Ambiental , Solo
18.
J Hydrol (Amst) ; 548: 251-262, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28649140

RESUMO

The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha-1 h-1 yr-1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

19.
Glob Chang Biol ; 22(5): 1976-84, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26679897

RESUMO

The idea of offsetting anthropogenic CO2 emissions by increasing global soil organic carbon (SOC), as recently proposed by French authorities ahead of COP21 in the 'four per mil' initiative, is notable. However, a high uncertainty still exits on land C balance components. In particular, the role of erosion in the global C cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km(2) resolution across the agricultural soils of the European Union (EU). Based on data-driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 of 187 Mha have C erosion rates <0.05 Mg C ha(-1) yr(-1), although some hot-spot areas showed eroded SOC >0.45 Mg C ha(-1) yr(-1). In comparison with a baseline without erosion, the model suggested an erosion-induced sink of atmospheric C consistent with previous empirical-based studies. Integrating all C fluxes for the EU agricultural soils, we estimated a net C loss or gain of -2.28 and +0.79 Tg yr(-1) of CO2 eq, respectively, depending on the value for the short-term enhancement of soil C mineralization due to soil disruption and displacement/transport with erosion. We concluded that erosion fluxes were in the same order of current carbon gains from improved management. Even if erosion could potentially induce a sink for atmospheric CO2, strong agricultural policies are needed to prevent or reduce soil erosion, in order to maintain soil health and productivity.


Assuntos
Dióxido de Carbono/análise , Carbono/análise , Solo/química , Agricultura , Ciclo do Carbono , Monitoramento Ambiental , Europa (Continente) , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA