Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(23): 6865-6871, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809171

RESUMO

All-optical switching (AOS) results in ultrafast and deterministic magnetization reversal upon single laser pulse excitation, potentially supporting faster and more energy-efficient data storage. To explore the fundamental limits of achievable bit densities in AOS, we have used soft X-ray transient grating spectroscopy to study the ultrafast magnetic response of a GdFe alloy after a spatially structured excitation with a periodicity of 17 nm. The ultrafast spatial evolution of the magnetization in combination with atomistic spin dynamics and microscopic temperature model calculations allows us to derive a detailed phase diagram of AOS as a function of both the absorbed energy density and the nanoscale excitation period. Our results suggest that the minimum size for AOS in GdFe alloys, induced by a nanoscale periodic excitation, is around 25 nm and that this limit is governed by ultrafast lateral electron diffusion and by the threshold for optical damage.

2.
J Synchrotron Radiat ; 31(Pt 3): 605-612, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38592969

RESUMO

Experimental characterization of the structural, electronic and dynamic properties of dilute systems in aqueous solvents, such as nanoparticles, molecules and proteins, are nowadays an open challenge. X-ray absorption spectroscopy (XAS) is probably one of the most established approaches to this aim as it is element-specific. However, typical dilute systems of interest are often composed of light elements that require extreme-ultraviolet to soft X-ray photons. In this spectral regime, water and other solvents are rather opaque, thus demanding radical reduction of the solvent volume and removal of the liquid to minimize background absorption. Here, we present an experimental endstation designed to operate a liquid flat jet of sub-micrometre thickness in a vacuum environment compatible with extreme ultraviolet/soft XAS measurements in transmission geometry. The apparatus developed can be easily connected to synchrotron and free-electron-laser user-facility beamlines dedicated to XAS experiments. The conditions for stable generation and control of the liquid flat jet are analyzed and discussed. Preliminary soft XAS measurements on some test solutions are shown.

3.
Phys Rev Lett ; 131(25): 256702, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181360

RESUMO

Time-resolved ultrafast EUV magnetic scattering was used to test a recent prediction of >10 km/s domain wall speeds by optically exciting a magnetic sample with a nanoscale labyrinthine domain pattern. Ultrafast distortion of the diffraction pattern was observed at markedly different timescales compared to the magnetization quenching. The diffraction pattern distortion shows a threshold dependence with laser fluence, not seen for magnetization quenching, consistent with a picture of domain wall motion with pinning sites. Supported by simulations, we show that a speed of ≈66 km/s for highly curved domain walls can explain the experimental data. While our data agree with the prediction of extreme, nonequilibrium wall speeds locally, it differs from the details of the theory, suggesting that additional mechanisms are required to fully understand these effects.

4.
Nano Lett ; 22(11): 4452-4458, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35605204

RESUMO

Ultrafast control of magnetization on the nanometer length scale, in particular all-optical switching, is key to putting ultrafast magnetism on the path toward future technological application in data storage technology. However, magnetization manipulation with light on this length scale is challenging due to the wavelength limitations of optical radiation. Here, we excite transient magnetic gratings in a GdFe alloy with a periodicity of 87 nm by the interference of two coherent femtosecond light pulses in the extreme ultraviolet spectral range. The subsequent ultrafast evolution of the magnetization pattern is probed by diffraction of a third, time-delayed pulse tuned to the Gd N-edge at a wavelength of 8.3 nm. By examining the simultaneously recorded first and second order diffractions and by performing reference real-space measurements with a wide-field magneto-optical microscope with femtosecond time resolution, we can conclusively demonstrate the ultrafast emergence of all-optical switching on the nanometer length scale.

5.
J Synchrotron Radiat ; 29(Pt 2): 594, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254326

RESUMO

The name of one of the authors in the article by Léveillé et al. [(2022), J. Synchrotron Rad. 29, 103-110] is corrected.

6.
J Synchrotron Radiat ; 29(Pt 4): 969-977, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787562

RESUMO

We report on the characterization of a novel extreme-ultraviolet polarimeter based on conical mirrors to simultaneously detect all the components of the electric field vector for extreme-ultraviolet radiation in the 45-90 eV energy range. The device has been characterized using a variable polarization source at the Elettra synchrotron, showing good performance in the ability to determine the radiation polarization. Furthermore, as a possible application of the device, Faraday spectroscopy and time-resolved experiments have been performed at the Fe M2,3-edge on an FeGd ferrimagnetic thin film using the FERMI free-electron laser source. The instrument is shown to be able to detect the small angular variation induced by an optical external stimulus on the polarization state of the light after interaction with magnetic thin film, making the device an appealing tool for magnetization dynamics research.

7.
J Synchrotron Radiat ; 29(Pt 1): 103-110, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985427

RESUMO

The latest Complementary Metal Oxide Semiconductor (CMOS) 2D sensors now rival the performance of state-of-the-art photon detectors for optical application, combining a high-frame-rate speed with a wide dynamic range. While the advent of high-repetition-rate hard X-ray free-electron lasers (FELs) has boosted the development of complex large-area fast CCD detectors in the extreme ultraviolet (EUV) and soft X-ray domains, scientists lacked such high-performance 2D detectors, principally due to the very poor efficiency limited by the sensor processing. Recently, a new generation of large back-side-illuminated scientific CMOS sensors (CMOS-BSI) has been developed and commercialized. One of these cost-efficient and competitive sensors, the GSENSE400BSI, has been implemented and characterized, and the proof of concept has been carried out at a synchrotron or laser-based X-ray source. In this article, we explore the feasibility of single-shot ultra-fast experiments at FEL sources operating in the EUV/soft X-ray regime with an AXIS-SXR camera equipped with the GSENSE400BSI-TVISB sensor. We illustrate the detector capabilities by performing a soft X-ray magnetic scattering experiment at the DiProi end-station of the FERMI FEL. These measurements show the possibility of integrating this camera for collecting single-shot images at the 50 Hz operation mode of FERMI with a cropped image size of 700 × 700 pixels. The efficiency of the sensor at a working photon energy of 58 eV and the linearity over the large FEL intensity have been verified. Moreover, on-the-fly time-resolved single-shot X-ray resonant magnetic scattering imaging from prototype Co/Pt multilayer films has been carried out with a time collection gain of 30 compared to the classical start-and-stop acquisition method performed with the conventional CCD-BSI detector available at the end-station.

8.
J Synchrotron Radiat ; 29(Pt 6): 1454-1464, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36345754

RESUMO

The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range.


Assuntos
Holografia , Lasers , Raios X , Radiografia
9.
Phys Rev Lett ; 128(7): 077401, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244431

RESUMO

We report on the experimental evidence of magnetic helicoidal dichroism, observed in the interaction of an extreme ultraviolet vortex beam carrying orbital angular momentum with a magnetic vortex. Numerical simulations based on classical electromagnetic theory show that this dichroism is based on the interference of light modes with different orbital angular momenta, which are populated after the interaction between light and the magnetic topology. This observation gives insight into the interplay between orbital angular momentum and magnetism and sets the framework for the development of new analytical tools to investigate ultrafast magnetization dynamics.

10.
Nano Lett ; 21(7): 2905-2911, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33724854

RESUMO

We utilize coherent femtosecond extreme ultraviolet (EUV) pulses from a free electron laser (FEL) to generate transient periodic magnetization patterns with periods as short as 44 nm. Combining spatially periodic excitation with resonant probing at the M-edge of cobalt allows us to create and probe transient gratings of electronic and magnetic excitations in a CoGd alloy. In a demagnetized sample, we observe an electronic excitation with a rise time close to the FEL pulse duration and ∼0.5 ps decay time indicative of electron-phonon relaxation. When the sample is magnetized to saturation in an external field, we observe a magnetization grating, which appears on a subpicosecond time scale as the sample is demagnetized at the maxima of the EUV intensity and then decays on the time scale of tens of picoseconds via thermal diffusion. The described approach opens multiple avenues for studying dynamics of ultrafast magnetic phenomena on nanometer length scales.

11.
Phys Rev Lett ; 123(14): 141802, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702176

RESUMO

We propose a new strategy for searching for dark matter axions using tunable cryogenic plasmas. Unlike current experiments, which repair the mismatch between axion and photon masses by breaking translational invariance (cavity and dielectric haloscopes), a plasma haloscope enables resonant conversion by matching the axion mass to a plasma frequency. A key advantage is that the plasma frequency is unrelated to the physical size of the device, allowing large conversion volumes. We identify wire metamaterials as a promising candidate plasma, wherein the plasma frequency can be tuned by varying the interwire spacing. For realistic experimental sizes, we estimate competitive sensitivity for axion masses of 35-400 µeV, at least.

12.
Phys Rev Lett ; 123(19): 197204, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765192

RESUMO

We present a comprehensive experimental and numerical study of magnetization dynamics in a thin metallic film triggered by single-cycle terahertz pulses of ∼20 MV/m electric field amplitude and ∼1 ps duration. The experimental dynamics is probed using the femtosecond magneto-optical Kerr effect, and it is reproduced numerically using macrospin simulations. The magnetization dynamics can be decomposed in three distinct processes: a coherent precession of the magnetization around the terahertz magnetic field, an ultrafast demagnetization that suddenly changes the anisotropy of the film, and a uniform precession around the equilibrium effective field that is relaxed on the nanosecond time scale, consistent with a Gilbert damping process. Macrospin simulations quantitatively reproduce the observed dynamics, and allow us to predict that novel nonlinear magnetization dynamics regimes can be attained with existing tabletop terahertz sources.

13.
Opt Express ; 26(3): 2917-2927, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401825

RESUMO

We demonstrate a silicon-based, single-layer anti-reflection coating that suppresses the reflectivity of metals at near-infrared frequencies, enabling optical probing of nano-scale structures embedded in highly reflective surroundings. Our design does not affect the interaction of terahertz radiation with metallic structures that can be used to achieve terahertz near-field enhancement. We have verified the functionality of the design by calculating and measuring the reflectivity of both infrared and terahertz radiation from a silicon/gold double layer as a function of the silicon thickness. We have also fabricated the unit cell of a terahertz meta-material, a dipole antenna comprising two 20-nm thick extended gold plates separated by a 2 µm gap, where the terahertz field is locally enhanced. We used the time-domain finite element method to demonstrate that such near-field enhancement is preserved in the presence of the anti-reflection coating. Finally, we performed magneto-optical Kerr effect measurements on a single 3-nm thick, 1-µm wide magnetic wire placed in the gap of such a dipole antenna. The wire only occupies 2% of the area probed by the laser beam, but its magneto-optical response can be clearly detected. Our design paves the way for ultrafast time-resolved studies, using table-top femtosecond near-infrared lasers, of dynamics in nano-structures driven by strong terahertz radiation.

14.
Nano Lett ; 16(4): 2533-42, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26967047

RESUMO

We present a novel concept of a magnetically tunable plasmonic crystal based on the excitation of Fano lattice surface modes in periodic arrays of magnetic and optically anisotropic nanoantennas. We show how coherent diffractive far-field coupling between elliptical nickel nanoantennas is governed by the two in-plane, orthogonal and spectrally detuned plasmonic responses of the individual building block, one directly induced by the incident radiation and the other induced by the application of an external magnetic field. The consequent excitation of magnetic field-induced Fano lattice surface modes leads to highly tunable and amplified magneto-optical effects as compared to a continuous film or metasurfaces made of disordered noninteracting magnetoplasmonic anisotropic nanoantennas. The concepts presented here can be exploited to design novel magnetoplasmonic sensors based on coupled localized plasmonic resonances, and nanoscale metamaterials for precise control and magnetically driven tunability of light polarization states.

15.
Small ; 12(8): 1013-23, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26766300

RESUMO

A novel approach to nanoactuation that relies on magnetomechanics instead of the conventional electromechanics utilized in micro and nanoactuated mechanical systems is devised and demonstrated. Namely, nanoactuated magnetomechanical devices that can change shape on command using a remote magnetic external stimulus, with a control at the subnanometer scale are designed and fabricated. In contrast to micro and nanoactuated electromechanical systems, nanoactuated magnetomechanical remote activation does not require physical contacts. Remote activation and control have a tremendous potential in bringing vast technological capabilities to more diverse environments, such as liquids or even inside living organisms, opening a clear path to applications in biotechnology and the emerging field of nanorobotics.

16.
Light Sci Appl ; 9: 49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257180

RESUMO

Enhancing magneto-optical effects is crucial for reducing the size of key photonic devices based on the non-reciprocal propagation of light and to enable active nanophotonics. Here, we disclose a currently unexplored approach that exploits hybridization with multipolar dark modes in specially designed magnetoplasmonic nanocavities to achieve a large enhancement of the magneto-optically induced modulation of light polarization. The broken geometrical symmetry of the design enables coupling with free-space light and hybridization of the multipolar dark modes of a plasmonic ring nanoresonator with the dipolar localized plasmon resonance of the ferromagnetic disk placed inside the ring. This hybridization results in a low-radiant multipolar Fano resonance that drives a strongly enhanced magneto-optically induced localized plasmon. The large amplification of the magneto-optical response of the nanocavity is the result of the large magneto-optically induced change in light polarization produced by the strongly enhanced radiant magneto-optical dipole, which is achieved by avoiding the simultaneous enhancement of re-emitted light with incident polarization by the multipolar Fano resonance. The partial compensation of the magneto-optically induced polarization change caused by the large re-emission of light with the original polarization is a critical limitation of the magnetoplasmonic designs explored thus far and that is overcome by the approach proposed here.

17.
Nanoscale ; 11(16): 7656-7666, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30951080

RESUMO

Thermal relaxation of nanoscale magnetic islands, mimicking Ising macrospins, is indispensable for studies of geometrically frustrated artificial spin systems and low-energy nanomagnetic computation. Currently-used heating schemes based on contact to a thermal reservoir, however, lack the speed and spatial selectivity required for the implementation in technological applications. Applying a hybrid approach by combining a plasmonic nanoheater with a magnetic element, in this work we establish the robust and reliable control of local temperatures in nanomagnetic arrays by contactless optical means. Plasmon-assisted photo-heating allows for temperature increases of up to several hundred kelvins, which lead to thermally-activated moment reversals and a pronounced reduction of the magnetic coercive field. Furthermore, the polarization-dependent absorption cross section of elongated plasmonic elements enables sublattice-specific heating on sub-nanosecond time scales. Using optical degrees of freedom, i.e. focal position, polarization, power, and pulse length, thermoplasmonic heating of nanomagnets offers itself for the use in flexible, fast, spatially-, and element-selective thermalization for functional magnetic metamaterials.

18.
Nanoscale ; 11(10): 4478-4488, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30805582

RESUMO

Magnetic nanostructures, as part of hybrid CMOS technology, have the potential to overcome silicon's scaling limit. However, a major problem is how to characterize their magnetization without disturbing it. Magnetic force microscopy (MFM) offers a convenient way of studying magnetization, but spatial resolution and sensitivity are usually boosted at the cost of increasing probe-sample interaction. By using a single magnetic domain wall (DW), confined in a V-shape nanostructure fabricated at the probe apex, it is demonstrated here that the spatial resolution and the magnetic sensitivity can be decoupled and both enhanced. Indeed, owing to the nanostructure's strong shape anisotropy, DW-probes have 2 high and 2 low magnetic moment states with opposite polarities, characterised by a geometrically constrained pinned DW, and curled magnetization, respectively. Electron holography studies, supported by numerical simulations, and in situ MFM show that the DW-probe state can be controlled, and thus used as a switchable tool with a low/high stray field intensity.

19.
ACS Appl Mater Interfaces ; 11(4): 4678-4685, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30607950

RESUMO

We explore electrodeposited ordered arrays of Fe, Ni, and Co nanorods embedded in anodic alumina membranes as a source of intense magnetic stray field gradients localized at the nanoscale. We perform a multiscale characterization of the stray fields using a combination of experimental methods (magnetooptical Kerr effect and virtual bright field differential phase contrast imaging) and micromagnetic simulations and establish a clear correlation between the stray fields and the magnetic configurations of the nanorods. For uniformly magnetized Fe and Ni wires, the field gradients vary following saturation magnetization of the corresponding metal and the diameter of the wires. In the case of Co nanorods, very localized (∼10 nm) and intense (>1 T) stray field sources are associated with the cores of magnetic vortexes. Confinement of that strong field at extremely small dimensions leads to exceptionally high field gradients up to 108 T/m. These results demonstrate a clear path to design and fine-tune nanoscale magnetic stray field ordered patterns with a broad applicability in key nanotechnologies, such as nanomedicine, nanobiology, nanoplasmonics, and sensors.

20.
Adv Mater ; 26(15): 2384-90, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24481833

RESUMO

A novel device is designed for on-chip selective trap and two-dimensional remote manipulation of single and multiple fluid-borne magnetic particles using field controlled magnetic domain walls in circular nanostructures. The combination of different ring-shaped nanostructures and field sequences allows for remote manipulation of magnetic particles with high-precision along any arbitrary pathway on a chip surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA