Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Amino Acids ; 48(6): 1413-22, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26888094

RESUMO

Previous in vitro studies demonstrate that exogenous application of the sulfur-containing amino acid methionine into cultured soybean cotyledons and seedlings reduces the level of methionine-poor storage proteins and elevates those that are methionine-rich. However, the effect of higher endogenous methionine in seeds on the composition of storage products in vivo is not studied yet. We have recently produced transgenic Arabidopsis seeds having significantly higher levels of methionine. In the present work we used these seeds as a model system and profiled them for changes in the abundances of 12S-globulins and 2S-albumins, the two major groups of storage proteins, using 2D-gels and MALDI-MS detection. The findings suggest that higher methionine affects from a certain threshold the accumulation of several subunits of 12S-globulins and 2S-albumins, regardless of their methionine contents, resulting in higher total protein contents. The mRNA abundances of most of the genes encoding these proteins were either correlated or not correlated with the abundances of these proteins, implying that methionine may regulate storage proteins at both transcriptional and post-transcriptional levels. The elevations in total protein contents resulted in reduction of total lipids and altered the fatty acid composition. Altogether, the data provide new insights into the regulatory roles of elevated methionine levels on seed composition.


Assuntos
Arabidopsis , Metabolismo dos Lipídeos/fisiologia , Metionina , Plantas Geneticamente Modificadas , Proteínas de Armazenamento de Sementes , Sementes , Arabidopsis/genética , Arabidopsis/metabolismo , Metionina/genética , Metionina/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Armazenamento de Sementes/biossíntese , Proteínas de Armazenamento de Sementes/genética , Sementes/genética , Sementes/metabolismo
2.
Physiol Plant ; 155(2): 126-137, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25898948

RESUMO

In soybean seed, a correlation has been observed between the concentration of free asparagine at mid-maturation and protein concentration at maturity. In this study, a Phaseolus vulgaris K+ -dependent asparaginase cDNA, PvAspG2, was expressed in transgenic soybean under the control of the embryo specific promoter of the ß-subunit of ß-conglycinin. Three lines were isolated having high expression of the transgene at the transcript, protein and enzyme activity levels at mid-maturation, with a 20- to 40-fold higher asparaginase activity in embryo than a control line expressing ß-glucuronidase. Increased asparaginase activity was associated with a reduction in free asparagine levels as a percentage of total free amino acids, by 11-18%, and an increase in free aspartic acid levels, by 25-60%. Two of the lines had reduced nitrogen concentration in mature seed as determined by nitrogen analysis, by 9-13%. Their levels of extractible globulins were reduced by 11-30%. This was accompanied by an increase in oil concentration, by 5-8%. The lack of change in nitrogen concentration in the third transgenic line was correlated with an increase in free glutamic acid levels by approximately 40% at mid-maturation.

3.
Phytochemistry ; 205: 113489, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36328196

RESUMO

L-Asparaginase (EC 3.5.1.1) activity has been previously reported to fluctuate with the photoperiod in young pea leaves, with higher activity in the light. The present research sought to investigate this phenomenon in developing leaves of common bean (Phaseolus vulgaris L.). There are two genes coding for K+-dependent asparaginase in this species. Expression of PvASPG1 predominates over PvASPG2 in all tissues. The catalytic efficiency of recombinant PvASPG2 was approximately 2-fold lower than that of PvASPG1. Polyclonal antibodies were raised against a specific peptide present in PvASPG1 to use in immunoblotting. In developing seed, asparaginase protein levels in the seed coat stayed constant, whereas levels in cotyledon were lower and progressively declined. In young leaf, asparagine protein levels showed diurnal variation, increasing at the end of the dark period and slowly decreasing during the light period. This was paralleled by changes in activity levels in leaf extracts. These changes accompanied a transient increase in free asparagine concentration at the beginning of the light period. The present results demonstrated that K+-dependent asparaginase activity reaches a maximum level at the transition from dark to light, anticipating dawn, in young leaves of common bean.


Assuntos
Phaseolus , Asparaginase , Asparagina
4.
J Exp Bot ; 63(8): 3173-84, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22357599

RESUMO

The relationship between asparagine metabolism and protein concentration was investigated in soybean seed. Phenotyping of a population of recombinant inbred lines adapted to Illinois confirmed a positive correlation between free asparagine levels in developing seeds and protein concentration at maturity. Analysis of a second population of recombinant inbred lines adapted to Ontario associated the elevated free asparagine trait with two of four quantitative trait loci determining population variation for protein concentration, including a major one on chromosome 20 (linkage group I) which has been reported in multiple populations. In the seed coat, levels of asparagine synthetase were high at 50 mg and progressively declined until 150 mg seed weight, suggesting that nitrogenous assimilates are pre-conditioned at early developmental stages to enable a high concentration of asparagine in the embryo. The levels of asparaginase B1 showed an opposite pattern, being low at 50 mg and progressively increased until 150 mg, coinciding with an active phase of storage reserve accumulation. In a pair of genetically related cultivars, ∼2-fold higher levels of asparaginase B1 protein and activity in seed coat, were associated with high protein concentration, reflecting enhanced flux of nitrogen. Transcript expression analyses attributed this difference to a specific asparaginase gene, ASPGB1a. These results contribute to our understanding of the processes determining protein concentration in soybean seed.


Assuntos
Asparagina/metabolismo , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Asparaginase/genética , Asparaginase/metabolismo , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Western Blotting , Regulação da Expressão Gênica de Plantas , Endogamia , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recombinação Genética/genética , Sementes/enzimologia , Sementes/crescimento & desenvolvimento , Glycine max/enzimologia , Glycine max/genética , Glycine max/crescimento & desenvolvimento
5.
Front Plant Sci ; 7: 389, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27066039

RESUMO

A series of genetically related lines of common bean (Phaseolus vulgaris L.) integrate a progressive deficiency in major storage proteins, the 7S globulin phaseolin and lectins. SARC1 integrates a lectin-like protein, arcelin-1 from a wild common bean accession. SMARC1N-PN1 is deficient in major lectins, including erythroagglutinating phytohemagglutinin (PHA-E) but not α-amylase inhibitor, and incorporates also a deficiency in phaseolin. SMARC1-PN1 is intermediate and shares the phaseolin deficiency. Sanilac is the parental background. To understand the genomic basis for variations in protein profiles previously determined by proteomics, the genotypes were submitted to short-fragment genome sequencing using an Illumina HiSeq 2000/2500 platform. Reads were aligned to reference sequences and subjected to de novo assembly. The results of the analyses identified polymorphisms responsible for the lack of specific storage proteins, as well as those associated with large differences in storage protein expression. SMARC1N-PN1 lacks the lectin genes pha-E and lec4-B17, and has the pseudogene pdlec1 in place of the functional pha-L gene. While the α-phaseolin gene appears absent, an approximately 20-fold decrease in ß-phaseolin accumulation is associated with a single nucleotide polymorphism converting a G-box to an ACGT motif in the proximal promoter. Among residual lectins compensating for storage protein deficiency, mannose lectin FRIL and α-amylase inhibitor 1 genes are uniquely present in SMARC1N-PN1. An approximately 50-fold increase in α-amylase inhibitor like protein accumulation is associated with multiple polymorphisms introducing up to eight potential positive cis-regulatory elements in the proximal promoter specific to SMARC1N-PN1. An approximately 7-fold increase in accumulation of 11S globulin legumin is not associated with variation in proximal promoter sequence, suggesting that the identity of individual proteins involved in proteome rebalancing might also be determined at the translational level.

6.
Front Plant Sci ; 6: 92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25750649

RESUMO

It has been hypothesized that the relatively low concentration of sulfur amino acids in legume seeds might be an ecological adaptation to nutrient poor, marginal soils. SARC1 and SMARC1N-PN1 are genetically related lines of common bean (dry bean, Phaseolus vulgaris) differing in seed storage protein composition. In SMARC1N-PN1, the lack of phaseolin and major lectins is compensated by increased levels of sulfur-rich proteins, resulting in an enhanced concentration of cysteine and methionine, mostly at the expense of the abundant non-protein amino acid, S-methylcysteine. To identify potential effects associated with an increased concentration of sulfur amino acids in the protein pool, the response of the two genotypes to low and high sulfur nutrition was evaluated under controlled conditions. Seed yield was increased by the high sulfate treatment in SMARC1N-PN1. The seed concentrations of sulfur, sulfate, and S-methylcysteine were altered by the sulfur treatment in both genotypes. The concentration of total cysteine and extractible globulins was increased specifically in SMARC1N-PN1. Proteomic analysis identified arcelin-like protein 4, lipoxygenase-3, albumin-2, and alpha amylase inhibitor beta chain as having increased levels under high sulfur conditions. Lipoxygenase-3 accumulation was sensitive to sulfur nutrition only in SMARC1N-PN1. Under field conditions, both SARC1 and SMARC1N-PN1 exhibited a slight increase in yield in response to sulfur treatment, typical for common bean.

7.
Phytochemistry ; 85: 30-5, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23098902

RESUMO

Asparagine (Asn) is a major form of nitrogen transported to sink tissues. Results from a previous study have shown that an Arabidopsis mutant lacking asparaginase activity develops relatively normally, highlighting a possible compensation by other types of asparagine metabolic enzymes. Prior studies with barley and tobacco mutants have associated Asn aminotransferase activity with the photorespiratory enzyme, serine (Ser):glyoxylate aminotransferase. This enzyme is encoded by AGT1 in Arabidopsis thaliana. Recombinant N-terminal His-tagged AGT1 purified from Escherichia coli was characterized with Ser, alanine (Ala) and Asn as amino acid donors and glyoxylate, pyruvate and hydroxypyruvate as organic acid acceptors. The V(max) of AGT1 with Asn was higher than with Ser or Ala by ca. 5- to 20-fold. As a result, the catalytic efficiency (V(max)/K(m)) was slightly higher with Asn than with the two other amino acids. In the roots of 10-day-old seedlings treated for 2h with 20mM Asn, the AGT1 transcript levels were raised by 2-fold. During this treatment, the concentration of Asn in root was raised by ca. 5-fold. These results suggest that AGT1 is involved in Asn metabolism in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Transaminases/metabolismo , Asparagina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA