Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 88(10): 5444-52, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27116118

RESUMO

With the aim of discerning between different sugar and sugar alcohols of biomedical relevance, such as gut permeability, arrays of 2-component probes were assembled with up to six boronic acid-appended viologens (BBVs): 4,4'-o-BBV, 3,3'-o-BBV, 3,4'-o-BBV, 4,4'-o,m-BBV, 4,7'-o-PBBV, and pBoB, each coupled to the fluorophore 8-hydroxypyrene, 1,3,6-trisulfonic acid trisodium salt (HPTS). These probes were screened for their ability to discriminate between lactulose, l-rhamnose, 3-O-methyl-d-glucose, and xylose. Binding studies of sugar alcohols mannitol, sorbitol, erythritol, adonitol, arabitol, galactitol, and xylitol revealed that diols containing threo-1,2-diol units have higher affinity for BBVs relative diols containing erythro-1,2 units. Those containing both threo-1,2- and 1,3-syn diol motifs showed high affinity for boronic acid binding. Fluorescence from the arrays were examined by principle component analysis (PCA) and linear discriminant analysis (LDA). Arrays with only three BBVs sufficed to discriminate between sugars (e.g., lactulose) and sugar alcohols (e.g., mannitol), establishing a differential probe. Compared with 4,4'-o-BBV, 2-fold reductions in lower limits of detection (LOD) and quantification (LOQ) were achieved for lactulose with 4,7-o-PBBV (LOD 41 µM, LOQ 72 µM). Using a combination of 4,4'-o-BBV, 4,7-o-PBBV, and pBoB, LDA statistically segregated lactulose/mannitol (L/M) ratios from 0.1 to 0.5, consistent with values encountered in small intestinal permeability tests. Another triad containing 3,3'-o-BBV, 4,4'-o-BBV, and 4,7-o-PBBV also discerned similar L/M ratios. This proof-of-concept demonstrates the potential for BBV arrays as an attractive alternate to HPLC to analyze mixtures of sugars and sugar alcohols in biomedical applications and sheds light on structural motifs that make this possible.


Assuntos
Ácidos Borônicos/química , Espectrometria de Fluorescência , Álcoois Açúcares/análise , Viologênios/química , Análise Discriminante , Corantes Fluorescentes/química , Lactulose/análise , Limite de Detecção , Manitol/análise , Permeabilidade , Análise de Componente Principal , Xilose/análise
2.
AoB Plants ; 14(4): plac030, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35912337

RESUMO

Hydrophilic amendments can enhance soil moisture content, which, in turn, can improve crop health under drought conditions. Understanding how different hydrogels interact with specific crops is necessary for optimal application. The soil conditioning abilities of a trehalose hydrogel and polyacrylate-based hydrogel were evaluated for tomatoes (Solanum lycopersicum) subjected to drought. Tomato plants were transplanted into individual pots with soil that contained trehalose hydrogel (0.4 wt%), polyacrylate-based hydrogel (0.4 wt%), or no hydrogel and subjected to a well-watered treatment or to pronounced soil drought, with or without rewatering. The health of tomato plants was monitored by measuring leaf total chlorophyll (a + b) concentration, leaf water potential (Ψleaf), stomatal conductance (g s) and relative growth rate (RGR). The polyacrylate-based hydrogel, but not the trehalose hydrogel, improved tomato plant function under drought conditions, as indicated by improved g s and RGR relative to the well-watered control. However, when subjected to a second drought, neither hydrogel was effective, and neither prolonged survival. The more hydrophilic polyacrylate-based hydrogel demonstrated promise in improving the growth of tomato plants under drought when included as a soil amendment at 0.4 wt%. This research is important for understanding the effects of these hydrogels as soil conditioners in drought prone systems.

3.
Nat Chem ; 12(11): 988-989, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33093674
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA