Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35161467

RESUMO

Wheat accounts for more than 50% of Australia's total grain production. The capability to generate accurate in-season yield predictions is important across all components of the agricultural value chain. The literature on wheat yield prediction has motivated the need for more novel works evaluating machine learning techniques such as random forests (RF) at multiple scales. This research applied a Random Forest Regression (RFR) technique to build regional and local-scale yield prediction models at the pixel level for three southeast Australian wheat-growing paddocks, each located in Victoria (VIC), New South Wales (NSW) and South Australia (SA) using 2018 yield maps from data supplied by collaborating farmers. Time-series Normalized Difference Vegetation Index (NDVI) data derived from Planet's high spatio-temporal resolution imagery, meteorological variables and yield data were used to train, test and validate the models at pixel level using Python libraries for (a) regional-scale three-paddock composite and (b) individual paddocks. The composite region-wide RF model prediction for the three paddocks performed well (R2 = 0.86, RMSE = 0.18 t ha-1). RF models for individual paddocks in VIC (R2 = 0.89, RMSE = 0.15 t ha-1) and NSW (R2 = 0.87, RMSE = 0.07 t ha-1) performed well, but moderate performance was seen for SA (R2 = 0.45, RMSE = 0.25 t ha-1). Generally, high values were underpredicted and low values overpredicted. This study demonstrated the feasibility of applying RF modeling on satellite imagery and yielded 'big data' for regional as well as local-scale yield prediction.


Assuntos
Imagens de Satélites , Triticum , Austrália , Meteorologia , Estações do Ano
2.
Sensors (Basel) ; 22(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36433249

RESUMO

Rice fraud is one of the common threats to the rice industry. Conventional methods to detect rice adulteration are costly, time-consuming, and tedious. This study proposes the quantitative prediction of rice adulteration levels measured through the packaging using a handheld near-infrared (NIR) spectrometer and electronic nose (e-nose) sensors measuring directly on samples and paired with machine learning (ML) algorithms. For these purposes, the samples were prepared by mixing rice at different ratios from 0% to 100% with a 10% increment based on the rice's weight, consisting of (i) rice from different origins, (ii) premium with regular rice, (iii) aromatic with non-aromatic, and (iv) organic with non-organic rice. Multivariate data analysis was used to explore the sample distribution and its relationship with the e-nose sensors for parameter engineering before ML modeling. Artificial neural network (ANN) algorithms were used to predict the adulteration levels of the rice samples using the e-nose sensors and NIR absorbances readings as inputs. Results showed that both sensing devices could detect rice adulteration at different mixing ratios with high correlation coefficients through direct (e-nose; R = 0.94-0.98) and non-invasive measurement through the packaging (NIR; R = 0.95-0.98). The proposed method uses low-cost, rapid, and portable sensing devices coupled with ML that have shown to be reliable and accurate to increase the efficiency of rice fraud detection through the rice production chain.


Assuntos
Oryza , Aprendizado de Máquina , Nariz Eletrônico , Redes Neurais de Computação , Algoritmos
3.
Sensors (Basel) ; 21(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34640673

RESUMO

Rice quality assessment is essential for meeting high-quality standards and consumer demands. However, challenges remain in developing cost-effective and rapid techniques to assess commercial rice grain quality traits. This paper presents the application of computer vision (CV) and machine learning (ML) to classify commercial rice samples based on dimensionless morphometric parameters and color parameters extracted using CV algorithms from digital images obtained from a smartphone camera. The artificial neural network (ANN) model was developed using nine morpho-colorimetric parameters to classify rice samples into 15 commercial rice types. Furthermore, the ANN models were deployed and evaluated on a different imaging system to simulate their practical applications under different conditions. Results showed that the best classification accuracy was obtained using the Bayesian Regularization (BR) algorithm of the ANN with ten hidden neurons at 91.6% (MSE = <0.01) and 88.5% (MSE = 0.01) for the training and testing stages, respectively, with an overall accuracy of 90.7% (Model 2). Deployment also showed high accuracy (93.9%) in the classification of the rice samples. The adoption by the industry of rapid, reliable, and accurate methods, such as those presented here, may allow the incorporation of different morpho-colorimetric traits in rice with consumer perception studies.


Assuntos
Oryza , Teorema de Bayes , Computadores , Aprendizado de Máquina , Percepção
4.
Molecules ; 26(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443695

RESUMO

Wine aroma is an important quality trait in wine, influenced by its volatile compounds. Many factors can affect the composition and levels (concentration) of volatile aromatic compounds, including the water status of grapevines, canopy management, and the effects of climate change, such as increases in ambient temperature and drought. In this study, a low-cost and portable electronic nose (e-nose) was used to assess wines produced from grapevines exposed to different levels of smoke contamination. Readings from the e-nose were then used as inputs to develop two machine learning models based on artificial neural networks. Results showed that regression Model 1 displayed high accuracy in predicting the levels of volatile aromatic compounds in wine (R = 0.99). On the other hand, Model 2 also had high accuracy in predicting smoke aroma intensity from sensory evaluation (R = 0.97). Descriptive sensory analysis showed high levels of smoke taint aromas in the high-density smoke-exposed wine sample (HS), followed by the high-density smoke exposure with in-canopy misting treatment (HSM). Principal component analysis further showed that the HS treatment was associated with smoke aroma intensity, while results from the matrix showed significant negative correlations (p < 0.05) were observed between ammonia gas (sensor MQ137) and the volatile aromatic compounds octanoic acid, ethyl ester (r = -0.93), decanoic acid, ethyl ester (r = -0.94), and octanoic acid, 3-methylbutyl ester (r = -0.89). The two models developed in this study may offer winemakers a rapid, cost-effective, and non-destructive tool for assessing levels of volatile aromatic compounds and the aroma qualities of wine for decision making.


Assuntos
Nariz Eletrônico , Aprendizado de Máquina , Fumaça , Vitis/química , Compostos Orgânicos Voláteis/análise , Vinho/análise , Cromatografia Gasosa-Espectrometria de Massas , Análise Multivariada , Redes Neurais de Computação , Odorantes/análise , Análise de Componente Principal
5.
Mil Psychol ; 33(6): 372-391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38536371

RESUMO

Everyone who serves in the military (and survives the experience) will eventually become a Veteran, and most will face the challenge of finding a civilian job. This paper investigates how contemporary Veterans experience the transition period between military exit and entrance into civilian life and how their own actions before separation shape their post-transition outcomes. We follow 35 servicemembers through the transition process, interviewing them before and several months after they left the military. These interviews reveal the importance of three factors - the conditions triggering their exit, the strength of their military identity, and their own planning (or lack thereof) for the transition to civilian life - in enhancing or detracting from achievement of a stated post-military goals and objective success in moving into work or school. The strength and depth of an individual's institutional identity shapes how and when servicemembers plan for military exit and how they adjust to unanticipated military exits. Early planning reflects anticipatory socialization for new civilian roles and is associated with better post-military outcomes. But early planning is often hindered by a strong military identity or facilitated by a weak military identity. These findings have important implications for the military and advocates who serve them with the recent military policy changes to transition assistance and the retirement pension system that encourage early planning for post-military life.

6.
Sensors (Basel) ; 20(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906800

RESUMO

Wildfires are an increasing problem worldwide, with their number and intensity predicted to rise due to climate change. When fires occur close to vineyards, this can result in grapevine smoke contamination and, subsequently, the development of smoke taint in wine. Currently, there are no in-field detection systems that growers can use to assess whether their grapevines have been contaminated by smoke. This study evaluated the use of near-infrared (NIR) spectroscopy as a chemical fingerprinting tool, coupled with machine learning, to create a rapid, non-destructive in-field detection system for assessing grapevine smoke contamination. Two artificial neural network models were developed using grapevine leaf spectra (Model 1) and grape spectra (Model 2) as inputs, and smoke treatments as targets. Both models displayed high overall accuracies in classifying the spectral readings according to the smoking treatments (Model 1: 98.00%; Model 2: 97.40%). Ultraviolet to visible spectroscopy was also used to assess the physiological performance and senescence of leaves, and the degree of ripening and anthocyanin content of grapes. The results showed that chemical fingerprinting and machine learning might offer a rapid, in-field detection system for grapevine smoke contamination that will enable growers to make timely decisions following a bushfire event, e.g., avoiding harvest of heavily contaminated grapes for winemaking or assisting with a sample collection of grapes for chemical analysis of smoke taint markers.

7.
Food Res Int ; 172: 113105, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689840

RESUMO

The increase in rice consumption and demand for high-quality rice is impacted by the growth of socioeconomic status in developing countries and consumer awareness of the health benefits of rice consumption. The latter aspects drive the need for rapid, low-cost, and reliable quality assessment methods to produce high-quality rice according to consumer preference. This is important to ensure the sustainability of the rice value chain and, therefore, accelerate the rice industry toward digital agriculture. This review article focuses on the measurements of the physicochemical and sensory quality of rice, including new and emerging technology advances, particularly in the development of low-cost, non-destructive, and rapid digital sensing techniques to assess rice quality traits and consumer perceptions. In addition, the prospects for potential applications of emerging technologies (i.e., sensors, computer vision, machine learning, and artificial intelligence) to assess rice quality and consumer preferences are discussed. The integration of these technologies shows promising potential in the forthcoming to be adopted by the rice industry to assess rice quality traits and consumer preferences at a lower cost, shorter time, and more objectively compared to the traditional approaches.


Assuntos
Oryza , Inteligência Artificial , Tecnologia , Agricultura , Percepção
8.
Foods ; 11(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35563907

RESUMO

Aroma and other physicochemical parameters are important attributes influencing consumer perception and acceptance of rice. However, current methods using multiple instruments and laboratory analysis make these assessments costly and time-consuming. Therefore, this study aimed to assess rice quality traits of 17 commercial rice types using a low-cost electronic nose and portable near-infrared spectrometer coupled with machine learning (ML). Specifically, artificial neural networks (ANN) were used to classify the type of rice and predict rice quality traits (aromas, color, texture, and pH of cooked rice) as targets. The ML models developed showed that the chemometrics obtained from both sensor technologies successfully classified the rice (Model 1: 98.7%; Model 2: 98.6%) and predicted the peak area of aromas obtained by gas chromatography-mass spectroscopy found in raw (Model 3: R = 0.95; Model 6: R = 0.95) and cooked rice (Model 4: R = 0.98; Model 7: R = 0.96). Furthermore, a high R = 0.98 was obtained for Model 5 to estimate the color, texture, and pH of cooked rice. The proposed method is rapid, low-cost, reliable, and may help the rice industry increase high-quality rice production and accelerate the adoption of digital technologies and artificial intelligence to support the rice value chain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA