Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chromatogr A ; 1540: 1-10, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29433823

RESUMO

Stable and reusable porphyrin-based magnetic nanocomposites were successfully synthesized for efficient extraction of polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. Meso-Tetra (4-carboxyphenyl) porphyrin (TCPP), a kind of porphyrin, can connect the copolymer after amidation and was linked to Fe3O4@SiO2 magnetic nanospheres via cross-coupling. Several characteristic techniques such as field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry, vibrating sample magnetometry and a tensiometer were used to characterize the as-synthesized materials. The structure of the copolymer was similar to that of graphene, possessing sp2-conjugated carbon rings, but with an appropriate amount of delocalized π-electrons giving rise to the higher extraction efficiency for heavy PAHs without sacrificing the performance in the extraction of light PAHs. Six extraction parameters, including the TCPP:Fe3O4@SiO2 (m:m) ratio, the amount of adsorbents, the type of desorption solvent, the desorption solvent volume, the adsorption time and the desorption time, were investigated. After the optimization of extraction conditions, a comparison of the extraction efficiency of Fe3O4@SiO2-TCPP and Fe3O4@SiO2@GO was carried out. The adsorption mechanism of TCPP to PAHs was studied by first-principles density functional theory (DFT) calculations. Combining experimental and calculated results, it was shown that the π-π stacking interaction was the main adsorption mechanism of TCPP for PAHs and that the amount of delocalized π-electrons plays an important role in the elution process. Under the optimal conditions, Fe3O4@SiO2-porphyrin showed good precision in intra-day (<8.9%) and inter-day (<13.0%) detection, low method detection limits (2-10 ng L-1), and wide linearity (10-10000 ng L-1). The method was applied to simultaneous analysis of 15 PAHs with acceptable recoveries, which were 71.1%-106.0% for ground water samples and 73.7%-107.1% for Yangtze River water samples, respectively.


Assuntos
Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Monitoramento Ambiental/instrumentação , Água Doce/química , Limite de Detecção , Magnetismo , Nanocompostos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Porfirinas/química , Dióxido de Silício/química , Poluentes Químicos da Água/análise
2.
J Chromatogr A ; 1478: 75-83, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27914609

RESUMO

Based on a homemade device, gas purge microsyringe extraction (GP-MSE) of crude oil samples was developed for the first time. As a simple, fast, low-cost, sensitive and solvent-saving technique, GP-MSE provides some outstanding advantages over the widely used sample preparation methods for crude oils such as column chromatography (ASTM D2549). Several parameters affecting extraction efficiency were optimized, including extraction temperature, extraction time, extraction solvent, condensing temperature and purge gas flow rate. With the optimized GP-MSE conditions, several real crude oil samples were extracted, and trace diamondoids were determined using comprehensive two dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS). In total, more than 100 diamondoids were detected and 27 marker compounds were identified and quantified accurately. The limits of detection (LODs, S/N=3) were less than 0.08µg/L for all diamondoids. The relative standard deviation (RSD) was below 8%, ranging from 1.1 to 7.6%. The linearity of the developed method was in the range of 0.5-100.0µg/L with correlation coefficients (R2) more than 0.996. The recoveries obtained at spiking 50µg/L were between 81 and 108% for diamondoids in crude oil samples. The developed method can also be extended to the analysis of other components in crude oils and other complex matrices.


Assuntos
Técnicas de Química Analítica/métodos , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Cíclicos/análise , Petróleo/análise , Gases/química , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA