Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047405

RESUMO

This research addresses the development of a formalized approach to dental material selection (DMS) in manufacturing removable complete dentures (RDC). Three types of commercially available polymethyl methacrylate (PMMA) grades, processed by an identical Digital Light Processing (DLP) 3D printer, were compared. In this way, a combination of mechanical, tribological, technological, microbiological, and economic factors was assessed. The material indices were calculated to compare dental materials for a set of functional parameters related to feedstock cost. However, this did not solve the problem of simultaneous consideration of all the material indices, including their significance. The developed DMS procedure employs the extended VIKOR method, based on the analysis of interval quantitative estimations, which allowed the carrying out of a fully fledged analysis of alternatives. The proposed approach has the potential to enhance the efficiency of prosthetic treatment by optimizing the DMS procedure, taking into consideration the prosthesis design and its production route.


Assuntos
Prótese Total , Polimetil Metacrilato , Desenho de Prótese , Tecnologia , Materiais Dentários , Desenho Assistido por Computador
2.
Sensors (Basel) ; 22(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015792

RESUMO

(1) Background: this study deals with design of an automated laboratory facility based on a servo-hydraulic testing machine for estimating parameters of mechanical hysteresis loops by means of the digital image correlation (DIC) method. (2) Methods: the paper presents a description of the testing facility, describes the grounds for calculating the elastic modulus, the offset yield strength (OYS) and the parameters of the mechanical hysteresis loops by the DIC method. (3) Results: the developed hardware-software facility was tested by studying the fatigue process in neat polyimide (PI) under various amplitude tension-tension loadings. It was found that the damage accumulation was accompanied by the decrease in the loop areas, while failure occurred when it reduced by at least ~5 kJ/m3. (4) Conclusions: it was shown that lowering the loop area along with changing the secant modulus value makes it possible to estimate the level of the scattered damage accumulation (mainly at the stresses above the OYS level). It was revealed that fractography data, namely the pattern and sizes of the fatigue crack initiation and propagation zones, did not correlate well with the dependences of the parameters of the hysteresis loops.

3.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234914

RESUMO

High-strength PI and PEI polymers differ by chemical structure and flexibility of the polymer chains that ensure lower cost and higher manufacturability of the latter. The choice of a particular polymer matrix is of actuality at design of antifriction composites on their basis. In this study, a comparative analysis of tribological behavior of PI and PEI- based composites was carried out with linear contact rubbing. The neat materials, as well as the two- and three-component composites reinforced with chopped carbon fibers, were investigated. The third components were typically used, but were different in nature (polymeric and crystalline) being solid lubricant fillers (PTFE, graphite and MoS2) with characteristic dimensions of several microns. The variable parameters were both load and sliding speed, as well as the counterface material. It was shown that an improvement of the tribological properties could be achieved by the tribological layer formation, which protected their wear track surfaces from the cutting and plowing effects of asperities on the surfaces of the metal and ceramic counterparts. The tribological layers were not formed in both neat polymers, while disperse hardening by fractured CF was responsible for the tribological layer formation in both two- and three component PI- and PEI-based composites. The effect of polymer matrix in tribological behavior was mostly evident in two-component composites (PI/CF, PEI/CF) over the entire P⋅V product range, while extra loading with Gr and MoS2 leveled the regularities of tribological layer formation, as well as the time variation in friction coefficients.

4.
Polymers (Basel) ; 16(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38543355

RESUMO

The objective of this research was to predict the fatigue behavior of polyetherimide-based composites loaded with short carbon fibers 200 µm long under cyclic loads. The weight fraction of the filler was 10, 20, and 30 wt.%, while the maximum stress in a cycle was 55, 65, and 75 MPa. A modified fatigue model based on the obtained experimental results and Basquin equation was developed. The novelty of the results is related to developing a model on the structure-property relationship, which accounts for both the maximum stress in a cycle and the carbon fiber content in the composites. In addition, an "algorithm" for designing such composites according to the fatigue life criterion was proposed. The approach to determine relationships between the composition, structure, and properties of PCMs described in this study can be applied to further expand the model and to improve its versatility in the use of other thermoplastic matrices and fillers. The results of this study can be applied for the design of composites for structural applications with designated fatigue properties.

5.
Polymers (Basel) ; 16(16)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39204494

RESUMO

The aim of this study was to investigate the tribological characteristics of commercially available high-strength polyphthalamide-based composites with great contents (30-50 wt.%) of both carbon and glass fibers in point and linear contacts against metal and ceramic counterfaces under dry friction and oil-lubricated conditions at various loads and sliding speeds. The lengths of both types of fibers were varied simultaneously with their contents while samples were fabricated from granules by injection molding. When loading PPA with 30 wt.% SCFs at an aspect ratio (AR) of 200, the ultimate tensile strength and the elastic modulus increased up to 142.7 ± 12.5 MPa and 12.9 ± 0.6 GPa, respectively. In the composites with the higher contents of reinforcing fibers PPA/40CCF and AR~1000, the ultimate tensile strength and the elastic modulus were 240 ± 3 MPa and 33.7 ± 1.9 GPa, respectively. Under the applied test conditions, a composite reinforced with 40 wt.% carbon fibers up to 100 µm long at an aspect ratio of ~1000 possessed the best both mechanical properties and tribological characteristics. One of the reasons that should be considered for improving the tribological characteristics of the composite is the fatigue wear mechanism, which is facilitated by the high filling degree, the strong interfacial adhesion, and the great aspect ratio for fibers. Under the oil-lubricated conditions, both friction coefficients and wear rates decreased, so such friction units could be implemented whenever possible. The reported data can be used as practical recommendations for applying fibrous polyphthalamide-based composites as friction unit components.

6.
Polymers (Basel) ; 16(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125206

RESUMO

In this paper, the tribological characteristics of polyethersulfone-based composites reinforced with short carbon fibers (SCFs) at aspect ratios of 14-250 and contents of 10-30 wt.% are reported for linear metal-polymer and ceramic-polymer tribological contacts. The results showed that the wear resistance could be greatly improved through tribological layer formation. Loading PES with 30 wt.% SCFs (2 mm) provided a minimum WR value of 0.77 × 10-6 mm3/N m. The tribological layer thicknesses were estimated to be equal to 2-7 µm. Several conditions were proposed, which contributed to the formation of a tribological layer from debris, including the three-stage pattern of the changing kinetics of the time dependence of the friction coefficient. The kinetics had to sharply increase up to ~0.4-0.5 in the first (running-in) stage and gradually decrease down to ~0.1-0.2 in the second stage. Then, if these levels did not change, it could be argued that any tribological layer had formed, become fixed and fulfilled its functional role. The PES-based composites loaded with SCFs 2 mm long were characterized by possessing the minimum CoF levels, for which their three-stage changing pattern corresponded to one of the conditions for tribological layer formation. This work provides valuable insight for studying the process parameters of tribological layer formation for SCF-reinforced thermoplastic PES composites and revealing their impact on tribological properties.

7.
Polymers (Basel) ; 16(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399829

RESUMO

The aim of this study was to optimize the ultrasonic consolidation (USC) parameters for 'PEI adherend/Prepreg (CF-PEI fabric)/PEI adherend' lap joints. For this purpose, artificial neural network (ANN) simulation was carried out. Two ANNs were trained using an ultra-small data sample, which did not provide acceptable predictive accuracy for the applied simulation methods. To solve this issue, it was proposed to artificially increase the learning sample by including additional data synthesized according to the knowledge and experience of experts. As a result, a relationship between the USC parameters and the functional characteristics of the lap joints was determined. The results of ANN simulation were successfully verified; the developed USC procedures were able to form a laminate with an even regular structure characterized by a minimum number of discontinuities and minimal damage to the consolidated components.

8.
Polymers (Basel) ; 16(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39339072

RESUMO

The aim of this study was to optimize a set of technological parameters (travel speed, extruder temperature, and extrusion rate) for 3D printing with a PEEK-based composite reinforced with 30 wt.% glass fibers (GFs). For this purpose, both Taguchi and finite element methods (FEM) were utilized. The artificial neural networks (ANNs) were implemented for computer simulation of full-scale experiments. Computed tomography of the additively manufactured (AM) samples showed that the optimal 3D printing parameters were the extruder temperature of 460 °C, the travel speed of 20 mm/min, and the extrusion rate of 4 rpm (the microextruder screw rotation speed). These values correlated well with those obtained by computer simulation using the ANNs. In such cases, the homogeneous micro- and macro-structures were formed with minimal sample distortions and porosity levels within 10 vol.% of both structures. The most likely reason for porosity was the expansion of the molten polymer when it had been squeezed out from the microextruder nozzle. It was concluded that the mechanical properties of such samples can be improved both by changing the 3D printing strategy to ensure the preferential orientation of GFs along the building direction and by reducing porosity via post-printing treatment or ultrasonic compaction.

9.
Polymers (Basel) ; 16(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201786

RESUMO

Low-temperature plasma treatment with atmospheric discharge with runaway electrons (DRE) was shown to be an efficient way to activate carbon fiber's (CF) surface and subsequently increase its interlayer shear strength (ILSS) values. It was demonstrated that an acceptable ILSS level was achieved after a DRE plasma treatment duration of 15 min. The treatment of CFs resulted in their surface roughness being increased and their functional groups grafting. The XPS data showed a change in the chemical composition and the formation of reactive oxygen-containing groups. SEM examinations of the PPS/CF laminates clearly demonstrated a difference in adhesive interaction at the PPS/CF interface. After the DRE plasma treatment, CFs were better wetted with the polymer, and the samples cohesively fractured predominantly through the matrix, but not along the PPS/CF interface, as was observed for the sample reinforced with the untreated CFs. The computer simulation results showed that raising the adhesive strength enhanced the ILSS values, but reduced resistance to transverse cracking under the loading pin. In general, higher flexural strength of the PPS/CF laminates was achieved with a greater interlayer adhesion level, which was consistent with the obtained experimental data.

10.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904475

RESUMO

Since the inelastic strain development plays an important role in the low-cycle fatigue (LCF) of High-Performance Polymers (HPPs), the goal of the research was to study the effect of an amorphous polymer matrix type on the resistance to cyclic loading for both polyimide (PI)- and polyetherimide (PEI)-based composites, identically loaded with short carbon fibers (SCFs) of various lengths, in the LCF mode. The fracture of the PI and PEI, as well as their particulate composites loaded with SCFs at an aspect ratio (AR) of 10, occurred with a significant role played by cyclic creep processes. Unlike PEI, PI was less prone to the development of creep processes, probably because of the greater rigidity of the polymer molecules. This increased the stage duration of the accumulation of scattered damage in the PI-based composites loaded with SCFs at AR = 20 and AR = 200, causing their greater cyclic durability. In the case of SCFs 2000 µm long, the length of the SCFs was comparable to the specimen thickness, causing the formation of a spatial framework of unattached SCFs at AR = 200. The higher rigidity of the PI polymer matrix provided more effective resistance to the accumulation of scattered damage with the simultaneously higher fatigue creep resistance. Under such conditions, the adhesion factor exerted a lesser effect. As shown, the fatigue life of the composites was determined both by the chemical structure of the polymer matrix and the offset yield stresses. The essential role of the cyclic damage accumulation in both neat PI and PEI, as well as their composites reinforced with SCFs, was confirmed by the results of XRD spectra analysis. The research holds the potential to solve problems related to the fatigue life monitoring of particulate polymer composites.

11.
Polymers (Basel) ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571160

RESUMO

This paper addresses peculiarities in the formation and adherence of a tribofilm on the wear track surface of antifriction PI- and PEI-based composites, as well as a transfer film (TF) on a steel counterface. It is shown that during hot pressing, PTFE nanoparticles melted and coalesced into micron-sized porous inclusions. In the PEI matrix, their dimensions were much larger (up to 30 µm) compared to those in the PI matrix (up to 6 µm). The phenomenon eliminated their role as effective uniformly distributed nanofillers, and the content of 5 wt.% was not always sufficient for the formation of a tribofilm or a significant decrease in the WR values. At the loaded content, the role of MoS2 and graphite (Gr) microparticles was similar, although filling with MoS2 microparticles more successfully solved the problem of adhering to a PTFE-containing tribofilm in the point tribological contact. This differed under the linear tribological contact. The higher roughness of the steel counterpart, as well as the larger area of its sliding surface with the same PTFE content in the three-component PI- and PEI-based composites, did not allow for a strong adherence of either the stable PTFE-containing tribofilm on the wear track surface or the TF on the steel counterpart. For the PEI-based composites, the inability to shield the steel counterpart from the more reactive polymer matrix, especially under the conditions of PTFE deficiency, was accompanied by multiple increases in the WR values, which were several times greater than that of neat PEI.

12.
Materials (Basel) ; 16(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903230

RESUMO

The optimal mode for ultrasonic welding (USW) of the "PEEK-ED (PEEK)-prepreg (PEI impregnated CF fabric)-ED (PEEK)-PEEK" lap joint was determined by artificial neural network (ANN) simulation, based on the sample of the experimental data expanded with the expert data set. The experimental verification of the simulation results showed that mode 10 (t = 900 ms, P = 1.7 atm, τ = 2000 ms) ensured the high strength properties and preservation of the structural integrity of the carbon fiber fabric (CFF). Additionally, it showed that the "PEEK-CFF prepreg-PEEK" USW lap joint could be fabricated by the "multi-spot" USW method with the optimal mode 10, which can resist the load per cycle of 50 MPa (the bottom HCF level). The USW mode, determined by ANN simulation for the neat PEEK adherends, did not provide joining both particulate and laminated composite adherends with the CFF prepreg reinforcement. The USW lap joints could be formed when the USW durations (t) were significantly increased up to 1200 and 1600 ms, respectively. In this case, the elastic energy is transferred more efficiently to the welding zone through the upper adherend.

13.
Dent J (Basel) ; 11(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37999029

RESUMO

In this study, a methodology was developed for ranking manufacturing technologies of removable complete dentures (RCDs) according to the results of their full-scale mechanical tests. The actuality of the study is motivated by establishing the advantages and drawbacks of 3D-printed RCDs in contrast with ones manufactured via an analog protocol. The RCDs were fabricated via four technological routes that included various combinations of subtractive technologies (hot polymerization/HP and CAD/CAM milling) and additive manufacturing (digital light processing/DLP) ones and the installation of commercially available cosmetic denture teeth (DT). In the mechanical tests, different blocks of teeth (incisors, canines, premolars and molars) were loaded. To solve the ranking problem, it was proposed to interpret the results of the mechanical tests in terms of the reliability, durability and compliance/stiffness criteria. For this purpose, the combined AHP-VIKOR method was applied. In addition, a computer simulation of the mechanical loading conditions and the response of the RCDs was performed based on the finite element method (FEM). As the key conclusion, it was stated that additive manufacturing (AM) methods are competitive and cost-effective techniques for the fabrication of RCDs.

14.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35267795

RESUMO

The purpose of this review is to summarize data on the structure, mechanical and tribological properties, and wear patterns of composites based on high-performance polymers (HPPs) intended for use in friction units. The review includes three key sections, divided according to the tribological contact schemes regardless of the polymer matrix. In the second part, the analysis of composites is carried out in point contacts. The third section is devoted to the results of studies of HPP-based composites in linear ones. The fourth section summarizes information on flat contacts. Particular attention is paid to the formation of transfer films (TFs) in the contacts and their influence on the tribological patterns of the studied rubbing materials. As a conclusion, it is noted that the challenge of experimental methods for analyzing TFs, stated by K. Friedrich, is effectively solved in recent studies by the XPS method, which enables us to accurately determine their composition. Although this determination is completed after the tribological tests, it allows not only a more accurate interpretation of their results considering specific conditions and loading schemes, but also the ability to design HPP-based composites that form required TFs performing their preset functions.

15.
Materials (Basel) ; 15(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36234280

RESUMO

The aim of this study is to substantiate the use machine learning methods to optimize a combination of ultrasonic welding (USW) parameters for manufacturing of multilayer lap joints consisting of two outer PEEK layers, a middle prepreg of unidirectional carbon fibers (CFs), and two energy directors (EDs) between them. As a result, a mathematical problem associated with determining the optimal combination of technological parameters was formulated for the formation of USW joints possessing improved functional properties. In addition, a methodology was proposed to analyze the mechanical properties of USW joints based on neural network simulation (NNS). Experiments were performed, and threshold values of the optimality conditions for the USW parameters were chosen. Accordingly, NNS was carried out to determine the parameter ranges, showing that the developed optimality condition was insufficient and required correction, taking into account other significant structural characteristics of the formed USW joints. The NNS study enabled specification of an extra area of USW parameters that were not previously considered optimal when designing the experiment. The NNS-predicted USW mode (P = 1.5 atm, t = 800 ms, and τ = 1500 ms) ensured formation of a lap joint with the required mechanical and structural properties (σUTS = 80.5 MPa, ε = 4.2 mm, A = 273 N·m, and Δh = 0.30 mm).

16.
Materials (Basel) ; 15(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36363217

RESUMO

(1) Background: The paper addresses the effect of carbon fibers (CFs) treatment by low-temperature plasma with runaway electrons on the deformation behavior of the polyetheretherketone (PEEK)-layered composites. (2) Methods: The effect of the interlayer adhesion on the mechanical response of the composites was assessed through the tensile and three-point bending tests. In addition, computer simulations of the three-point bending were carried out with the use of the finite element analysis (FEM) with varying conditions at the "PEEK-CF layers" interface. (3) Results: DRE-plasma treatment during the optimal time of t = 15 min led to formation of a rougher surface and partial desizing of a finishing agent. The shear strength of the layered composites increased by 54%, while the tensile strength and the flexural modulus (at three-point bending) increased by 16% (up to 893 MPa) and by 10% (up to 93 GPa), respectively. (4) Conclusions: The results of the numerical experiments showed that the increase in the stiffness, on the one hand, gave rise to enlarging the flexural modulus; on the other hand, a nonlinear decrease in the strength may occur. For this reason, the intention to maximize the level of the interlayer stiffness can result in lowering the fracture toughness, for example, at manufacturing high-strength composites.

17.
Polymers (Basel) ; 14(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335546

RESUMO

The structure, mechanical and tribological properties of the PEI- and PI-based composites reinforced with Chopped Carbon Fibers (CCF) and loaded with commercially available micron-sized solid lubricant fillers of various nature (polymeric-PTFE, and crystalline-Gr and MoS2) were studied in the temperature range of 23-180 (240) °C. It was shown that tribological properties of these ternary composites were determined by the regularities of the transfer film (TF) adherence on their wear track surfaces. The patterns of TFs formation depended on the chemical structure of the polymer matrix (stiffness/flexibility) as well as the tribological test temperatures. Loading with PTFE solid lubricant particles, along with the strengthening effect of CCF, facilitated the formation and fixation of the TF on the sliding surfaces of the more compliant PEI-based composite at room temperature. In this case, a very low coefficient of friction (CoF) value of about 0.05 was observed. For the more rigid identically filled PI-based composite, the CoF value was twice as high under the same conditions. At elevated temperatures, rising both CoF levels and oscillation of their values made it difficult to retain the non-polar PTFE transfer film on the sliding surfaces of the PI-based composite. As a result, friction of the ceramic counterpart proceeded over the composite surface without any protecting TF at T ≥ 180 °C. For the sample with the more flexible PEI matrix, the PTFE-containing TF was retained on its sliding surface, providing a low WR level even under CoF rising and oscillating conditions. A similar analysis was carried out for the less efficient crystalline solid lubricant filler MoS2.

18.
Materials (Basel) ; 15(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35806781

RESUMO

The fatigue properties of neat polyimide and the "polyimide + 10 wt.% milled carbon fibers + 10 wt.% polytetrafluoroethylene" composite were investigated under various cyclic loading conditions. In contrast to most of the reported studies, constructing of hysteresis loops was performed through the strain assessment using the non-contact 2D Digital Image Correlation method. The accumulation of cyclic damage was analyzed by calculating parameters of mechanical hysteresis loops. They were: (i) the energy losses (hysteresis loop area), (ii) the dynamic modulus (proportional to the compliance/stiffness of the material) and (iii) the damping capacity (calculated through the dissipated and total mechanical energies). On average, the reduction in energy losses reached 10-18% at the onset of fracture, whereas the modulus variation did not exceed 2.5% of the nominal value. The energy losses decreased from 20 down to 18 J/m3 (10%) for the composite, whereas they reduced from 30 down to 25 J/m3 (17%) for neat PI in the low-cycle fatigue mode. For high-cycle fatigue, energy losses decreased from 10 to 9 J/m3 (10%) and from 17 to 14 J/m3 (18%) for neat PI and composite, respectively. For this reason, the changes of the energy losses due to hysteresis are of prospects for the characterization of both neat PI and the reinforced PI-based composites.

19.
Materials (Basel) ; 15(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36295314

RESUMO

(1) Background: The paper addresses the computer simulation and prediction of the service life of the base of removable complete dentures (RCDs) under typical loads caused by biting and chewing food. For this purpose, the finite element method (FEM) was used. It is assumed that various blocks of teeth, such as incisors, canines, premolars and molars, are subjected to cyclic impacts during a human life. (2) Methods: Both symmetric and asymmetric mastication (two- and one-sided loads, respectively) cases were considered. The load level was assumed to be 100 N, which corresponds to the average muscular compression force of typical human jaws. (3) Results: The FEM analysis of the stress-strain state evolution for RCDs under cyclic loads was carried out. Maps of equivalent lines were drawn for the denture base in terms of its durability. A multi-axial criterion was implemented to determine the number of cycles prior to failure by the mechanism of a normal opening mode crack. The FEM-based assessment of the service life of RCDs enabled us to establish the critical stress concentration areas, thereby allowing for further planning for the correction of an occlusal scheme or teeth inclinations. As a result, the service life of RCDs under cyclic loading can be improved. (4) Conclusions: An algorithm for designing RCDs in the case of edentulism based on the FEM simulation using commercial software as part of the procedure is proposed.

20.
Polymers (Basel) ; 13(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34301026

RESUMO

Laminated composites based on polyetheretherketone (PEEK) and polyimide (PI) matrices were fabricated by hot compression. Reinforcing materials (unidirectional carbon-fiber (CF) tapes or carbon fabric) and their layout patterns were varied. Stress-strain diagrams after three-point flexural tests were analyzed, and both lateral faces of the fractured specimens and fractured surfaces (obtained by optical and scanning electron microscopy, respectively) were studied. It was shown that the laminated composites possessed the maximum mechanical properties (flexural elastic modulus and strength) in the case of the unidirectional CF (0°/0°) layout. These composites were also not subjected to catastrophic failure during the tests. The PEEK-based composites showed twice the flexural strength of the PI-based ones (0.4 and 0.2 GPa, respectively), while the flexural modulus was four times higher (60 and 15 GPa, correspondently). The reason was associated with different melt flowability of the used polymer matrices and varied inter- (intra)layer adhesion levels. The effect of adhesion was additionally studied by computer simulation using a developed two-dimensional FE-model. It considered initial defects between the binder and CF, as well as subsequent delamination and failure under loads. Based on the developed FE-model, the influence of defects and delamination on the strength properties of the composites was shown at different stress states, and the corresponding quantitative estimates were reported. Moreover, another model was developed to determine the three-point flexural properties of the composites reinforced with CF and carbon fabric, taking into account different fiber layouts. It was shown within this model framework that the flexural strength of the studied composites could be increased by an order of magnitude by enhancing the adhesion level (considered through the contact area between CF and the binder).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA