Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(13): 6249-6258, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37156508

RESUMO

Magnetic topological insulators constitute a novel class of materials whose topological surface states (TSSs) coexist with long-range ferromagnetic order, eventually breaking time-reversal symmetry. The subsequent bandgap opening is predicted to co-occur with a distortion of the TSS warped shape from hexagonal to trigonal. We demonstrate such a transition by means of angle-resolved photoemission spectroscopy on the magnetically rare-earth (Er and Dy) surface-doped topological insulator Bi2Se2Te. Signatures of the gap opening are also observed. Moreover, increasing the dopant coverage results in a tunable p-type doping of the TSS, thereby allowing for a gradual tuning of the Fermi level toward the magnetically induced bandgap. A theoretical model where a magnetic Zeeman out-of-plane term is introduced in the Hamiltonian governing the TSS rationalizes these experimental results. Our findings offer new strategies to control magnetic interactions with TSSs and open up viable routes for the realization of the quantum anomalous Hall effect.

2.
Phys Rev Lett ; 131(16): 166402, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925697

RESUMO

We study the effects of strain in moiré systems composed of honeycomb lattices. We elucidate the formation of almost perfect one-dimensional moiré patterns in twisted bilayer systems. The formation of such patterns is a consequence of an interplay between twist and strain which gives rise to a collapse of the reciprocal space unit cell. As a criterion for such collapse we find a simple relation between the two quantities and the material specific Poisson ratio. The induced one-dimensional behavior is characterized by two, usually incommensurate, periodicities. Our results offer explanations for the complex patterns of one-dimensional channels observed in low angle twisted bilayer graphene systems and twisted bilayer dicalcogenides. Our findings can be applied to any hexagonal twisted moiré pattern and can be easily extended to other geometries.

3.
Phys Rev Lett ; 131(1): 016003, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478460

RESUMO

Junctions provide a wealth of information on the symmetry of the order parameter of superconductors. We analyze junctions between a scanning tunneling microscope (STM) tip and superconducting twisted bilayer graphene (TBG) and TBG Josephson junctions (JJs). We compare superconducting phases that are even or odd under valley exchange (s- or f-wave). The critical current in mixed (s and f) JJs strongly depends on the angle between the junction and the lattice. In STM-TBG junctions, due to Andreev reflection, the f-wave leads to a prominent peak in subgap conductance, as seen in experiments.

4.
J Phys Condens Matter ; 31(8): 085802, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30530946

RESUMO

We examine the combined effects of a Kekulé coupling texture (KC) and a Dzyaloshinskii-Moriya interaction (DMI) in a two-dimensional ferromagnetic honeycomb lattice. By analyzing the gap closing conditions and the inversions of the bulk bands, we identify the parameter range in which the system behaves as a trivial or a nontrivial topological magnon insulator. We find four topological phases in terms of the KC parameter and the DMI strength. We present the bulk-edge correspondence for the magnons in a honeycomb lattice with an armchair or a zigzag boundary. Furthermore, we find Tamm-like edge states due to the intrinsic on-site interactions along the boundary sites. Our results may have significant implications to magnon transport properties in the 2D magnets at low temperatures.

5.
J Phys Condens Matter ; 29(29): 295701, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28557806

RESUMO

We investigate the properties of magnon edge states in a ferromagnetic honeycomb spin lattice with a Dzialozinskii-Moriya interaction (DMI). We derive analytical expressions for the energy spectra and wavefunctions of the edge states localized on the boundaries. By introducing an external on-site potential at the outermost sites, we show that the bosonic band structure is similar to that of the fermionic graphene. We investigate the region in the momentum space where the bosonic edge states are well defined and we analyze the width of the edge state and their dependence with the DMI strength. Our findings extend the predictions using topological arguments and they allow size-dependent confirmation from possible experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA