Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 28(6): 577-86, 2014 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-24519820

RESUMO

RATIONALE: Currently, a limited number of gold arsenides have been described, some of which have important industrial applications, Laser ablation synthesis (LAS) has been employed in an attempt to generate some novel gold arsenide compounds. METHODS: LAS of gold arsenides was performed using nano-gold (NG) and arsenic as precursors. The clusters formed during laser desorption ionisation (LDI) were analysed by mass spectrometry using a quadrupole ion trap and reflectron time-of-flight analyser to determine the stoichiometry. UV/VIS spectrophotometry was used to follow possible hydrothermal synthesis of gold arsenides. RESULTS: LAS of NG yielded singly charged gold clusters Aum (+(-)) (m = 1-35). LAS of bulk arsenic and nano-arsenic produced Asn (+(-)) clusters with n = 2-10 and n = 2-20, respectively. Laser ablation of Au-As nano-composites or NG-As mixtures generated Aum (+(-)) (m = 1-12), Asn (+(-)) (n = 3-4), and several series of Aum Asn (+(-)) (m = 1-60, n = 1-18) clusters. Over 450 species of gold arsenide clusters and 212 mixed chlorinated Aum Asn Clx clusters were detected and their stoichiometry determined. CONCLUSIONS: Many new gold arsenides were synthesised via LAS for the first time with Au-As composites and NG-As mixtures of different Au:As ratios using mass spectrometry to determine cluster stoichiometry. The resolved stoichiometry of Aum Asn clusters determined in this study could accelerate the development of advanced Au-As nano-materials.

2.
Rapid Commun Mass Spectrom ; 28(3): 297-304, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24375881

RESUMO

RATIONALE: Gold carbides can be produced via laser ablation synthesis (LAS) from mixtures of nano-gold (NG) and various carbonaceous materials. The nano-composite of nano-gold (NG) and nano-diamond (ND) might represent a promising precursor for the generation of new gold carbides. METHODS: Time-of-flight mass spectrometry (TOF MS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) were used. The stoichiometry of clusters was determined via modelling of the isotopic patterns and MS(n) analysis. RESULTS: A simple procedure for the preparation of ND-NG nano-composite was developed using NG and ND. The formation of AuCn(+) (n = 1-11, 18), Au2Cn(+) (n = 1-16) and Au3Cn(+) (n = 1-10) clusters during LAS of the nano-composite was proved. Structures of gold carbides are proposed and discussed. Diamonds-containing AumCn(+) (m = 1-3, n = 10, 14, 18, 22) clusters might be not carbides but endohedral supramolecular complexes Aum@Cn(+) i.e., 'gold-doped' diamonds. CONCLUSIONS: TOF MS was shown to be a useful technique for following the formation of gold carbides in the gas phase. Clusters and 'gold-doped' diamonds generated might inspire synthesis of new Au-C materials with hardly predictable, unusual properties.

3.
Rapid Commun Mass Spectrom ; 27(11): 1196-202, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23650032

RESUMO

RATIONALE: Titanium-carbon (Ti-C) ceramic thin films (abbreviated as n-TiC/a-C:H) are very important for industrial applications. However, their chemical structure is still not completely resolved. The aim of this study was to determine the chemical composition of such n-TiC/a-C:H layers prepared by balanced magnetron sputtering under various experimental conditions. METHODS: Mass spectrometric analysis of Ti-C thin films was carried out via laser desorption ionisation (LDI) using a quadrupole ion trap and reflectron time-of-flight analyser. The stoichiometry of clusters formed via laser ablation was determined, and the relative abundances of species for which the isotopic patterns overlaps were estimated using a least-squares program. RESULTS: Ti-C films were found to be composites of (i) pure and hydrogenated TiC, (ii) titanium oxycarbides, and (iii) titanium oxides of various degrees of hydrogenation (all embedded in an amorphous and/or diamond-like carbon matrix). Hydrogenated titanium oxycarbide was the main component of the surface layer, whereas deeper layers were composed primarily of TiC and titanium oxides (also embedded in the carbon matrix). CONCLUSIONS: Mass spectrometry proved useful for elucidating the chemical structure of the hard ceramic-like Ti-C layers produced by magnetron sputtering. The Ti-C layers were found to be complex composites of various chemical entities. Knowledge of the resolved structure could accelerate further development of these kinds of materials.

4.
Rapid Commun Mass Spectrom ; 26(9): 1100-8, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22467460

RESUMO

Gold phosphides show unique optical or semiconductor properties and there are extensive high technology applications, e.g. in laser diodes, etc. In spite of the various AuP structures known, the search for new materials is wide. Laser ablation synthesis is a promising screening and synthetic method. Generation of gold phosphides via laser ablation of red phosphorus and nanogold mixtures was studied using laser desorption ionisation time-of-flight mass spectrometry (LDI TOFMS). Gold clusters Au(m)(+) (m = 1 to ~35) were observed with a difference of one gold atom and their intensities were in decreasing order with respect to m. For P(n)(+) (n = 2 to ~111) clusters, the intensities of odd-numbered phosphorus clusters are much higher than those for even-numbered phosphorus clusters. During ablation of P-nanogold mixtures, clusters Au(m)(+) (m = 1-12), P(n)(+) (n = 2-7, 9, 11, 13-33, 35-95 (odd numbers)), AuP(n)(+) (n = 1, 2-88 (even numbers)), Au(2)P(n)(+) (n = 1-7, 14-16, 21-51 (odd numbers)), Au(3)P(n)(+) (n = 1-6, 8, 9, 14), Au(4)P(n)(+) (n = 1-9, 14-16), Au(5)P(n)(+) (n = 1-6, 14, 16), Au(6)P(n)(+) (n = 1-6), Au(7)P(n)(+) (n = 1-7), Au(8)P(n)(+) (n = 1-6, 8), Au(9)P(n)(+) (n = 1-10), Au(10)P(n)(+) (n = 1-8, 15), Au(11)P(n)(+) (n = 1-6), and Au(12)P(n)(+) (n = 1, 2, 4) were detected in positive ion mode. In negative ion mode, Au(m)(-) (m = 1-5), P(n)(-) (n = 2, 3, 5-11, 13-19, 21-35, 39, 41, 47, 49, 55 (odd numbers)), AuP(n)(-) (n = 4-6, 8-26, 30-36 (even numbers), 48), Au(2)P(n)(-) (n = 2-5, 8, 11, 13, 15, 17), A(3) P(n)(-) (n = 6-11, 32), Au(4)P(n)(-) (n = 1, 2, 4, 6, 10), Au(6)P(5)(-), and Au(7)P(8)(-) clusters were observed. In both modes, phosphorus-rich Au(m)P(n) clusters prevailed. The first experimental evidence for formation of AuP(60) and gold-covered phosphorus Au(12)P(n) (n = 1, 2, 4) clusters is given. The new gold phosphides generated might inspire synthesis of new Au-P materials with specific properties.

5.
Rapid Commun Mass Spectrom ; 25(12): 1687-93, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21598328

RESUMO

Laser Desorption Ionisation (LDI) and Matrix-Assisted Laser Desorption Ionisation (MALDI) Time-of-Flight Mass Spectrometry (TOFMS) were used to study the pulsed laser ablation of aluminium nitride (AlN) nano powder. The formation of Al(m)(+) (m=1-3), N(n)(+) (n=4, 5), AlN(n)(+) (n=1-5, 19, 21), Al(m)N(+) (m=2-3), Al(3)N(2)(+), Al(9)N(n)(+) (n=5, 7, 9, 11 and 15), Al(11)N(n)(+) (n=4, 6, 10, 12, 19, 21, 23, and 25), and Al(13)N(n)(+) (n=25, 31, 32, 33, 34, 35, and 36) clusters was detected in positive ion mode. Similarly, Al(m)(-) (m=1-3), AlN(n)(-) (n=1-3, 5), Al(m)N(-) (n=2, 3), Al(2)N(n)(-) (n=2-4, 28, 30), N(n)(-) (n=2, 3), Al(4)N(7)(-) Al(8)N(n)(-) (n=1-6), and Al(13)N(n)(-) (n=9, 18, 20, 22, 24, 26, 28, 33, 35, 37, 39, 41 and 43) clusters were observed in negative ion mode. The formation of the stoichiometric Al(10) N(10) cluster was shown to be of low abundance. On the contrary, the laser ablation of nano-AlN led mainly to the formation of nitrogen-rich Al(m)N(n) clusters in both negative and positive ion mode. The stoichiometry of the Al(m)N(n) clusters was determined via isotopic envelope analysis and computer modelling.

6.
Rapid Commun Mass Spectrom ; 23(8): 1125-31, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19280609

RESUMO

Detonation nanodiamonds (NDs) were studied by time-of-flight mass spectrometry (TOF MS). The formation of singly charged carbon clusters, C(n) (+), with groups of clusters at n = 1-35, n approximately 160-400 and clusters with n approximately 8000 was observed. On applying either high laser energy or ultrasound, the position and intensity of the maxima change and a new group of clusters at n approximately 70-80 is formed. High carbon clusters consist of an even number of carbons while the percentage of odd-numbered clusters is quite low (< or =5-10%). On increasing the laser energy, the maximum of ionization (at n approximately 200 carbons) is shifted towards the lower m/z values. It is suggested that this is mainly due to the disaggregation of the original NDs. However, the partial destruction of NDs is also possible. The carbon clusters (n approximately 2-35) are partially hydrogenated and the average value of the hydrogenation was 10-30%. Trace impurities in NDs like Li, B, Fe, and others were detected at high laser energy. Several matrices for ionizing NDs were examined and NDs themselves can also be used as a matrix for the ionization of various organic compounds. When NDs were used as a matrix for gold nanoparticles, the formation of various gold carbides Au(m)C(n) was detected and their stoichiometry was determined. It was demonstrated that TOF MS can be used advantageously to analyze NDs, characterize their size distribution, aggregation, presence of trace impurities and surface chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA