Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Med Virol ; 95(8): e29010, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37537755

RESUMO

The aim of this study is to investigate the effectiveness of prolonged versus standard course oseltamivir treatment among critically ill patients with severe influenza. A retrospective study of a prospectively collected database including adults with influenza infection admitted to 184 intensive care units (ICUs) in Spain from 2009 to 2018. Prolonged oseltamivir was defined if patients received the treatment beyond 5 days, whereas the standard-course group received oseltamivir for 5 days. The primary outcome was all-cause ICU mortality. Propensity score matching (PSM) was constructed, and the outcome was investigated through Cox regression and RCSs. Two thousand three hundred and ninety-seven subjects were included, of whom 1943 (81.1%) received prolonged oseltamivir and 454 (18.9%) received standard treatment. An optimal full matching algorithm was performed by matching 2171 patients, 1750 treated in the prolonged oseltamivir group and 421 controls in the standard oseltamivir group. After PSM, 387 (22.1%) patients in the prolonged oseltamivir and 119 (28.3%) patients in the standard group died (p = 0.009). After adjusting confounding factors, prolonged oseltamivir significantly reduced ICU mortality (odds ratio [OR]: 0.53, 95% confidence interval [CI]: 0.40-0.69). Prolonged oseltamivir may have protective effects on survival at Day 10 compared with a standard treatment course. Sensitivity analysis confirmed these findings. Compared with standard treatment, prolonged oseltamivir was associated with reduced ICU mortality in critically ill patients with severe influenza. Clinicians should consider extending the oseltamivir treatment duration to 10 days, particularly in higher-risk groups of prolonged viral shedding. Further randomized controlled trials are warranted to confirm these findings.


Assuntos
Influenza Humana , Oseltamivir , Adulto , Humanos , Oseltamivir/uso terapêutico , Influenza Humana/tratamento farmacológico , Antivirais/uso terapêutico , Estudos Retrospectivos , Estado Terminal
2.
Crit Care ; 25(1): 63, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588914

RESUMO

BACKGROUND: The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. METHODS: Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient's factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves. RESULTS: The database included a total of 2022 patients (mean age 64 [IQR 5-71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10-17]) and SOFA score (5 [IQR 3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age (< 65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623, 30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C (severe) phenotype was the most common (857; 42.5%) and was characterized by the interplay of older age (> 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications. CONCLUSION: The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a "one-size-fits-all" model in practice.


Assuntos
COVID-19/mortalidade , COVID-19/terapia , Idoso , Análise por Conglomerados , Estado Terminal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Medição de Risco , Fatores de Risco , Espanha/epidemiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-39003118

RESUMO

OBJECTIVE: To assess incidence, risk factors and impact of acute kidney injury(AKI) within 48 h of intensive care unit(ICU) admission on ICU mortality in patients with SARS-CoV-2 pneumonia. To assess ICU mortality and risk factors for continuous renal replacement therapy (CRRT) in AKI I and II patients. DESIGN: Retrospective observational study. SETTING: Sixty-seven ICU from Spain, Andorra, Ireland. PATIENTS: 5399 patients March 2020 to April 2022. MAIN VARIABLES OF INTEREST: Demographic variables, comorbidities, laboratory data (worst values) during the first two days of ICU admission to generate a logistic regression model describing independent risk factors for AKI and ICU mortality. AKI was defined according to current international guidelines (kidney disease improving global outcomes, KDIGO). RESULTS: Of 5399 patients included 1879 (34.8%) developed AKI. These patients had higher ICU mortality and AKI was independently associated with a higher ICU mortality (HR 1.32 CI 1.17-1.48; p < 0.001). Male gender, hypertension, diabetes, obesity, chronic heart failure, myocardial dysfunction, higher severity scores, and procalcitonine were independently associated with the development of AKI. In AKI I and II patients the need for CRRT was 12.6% (217/1710). In these patients, APACHE II, need for mechanical ventilation in the first 24 h after ICU admission and myocardial dysfunction were associated with risk of needing CRRT. AKI I and II patients had a high ICU mortality (38.5%), especially if CRRT were required (64.1% vs. 34,8%; p < 0.001). CONCLUSIONS: Critically ill patients with SARS-CoV-2 pneumonia and AKI have a high ICU mortality. Even AKI I and II stages are associated with high risk of needing CRRT and ICU mortality.

4.
Med Intensiva (Engl Ed) ; 48(6): 326-340, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38462398

RESUMO

OBJECTIVE: To validate the unsupervised cluster model (USCM) developed during the first pandemic wave in a cohort of critically ill patients from the second and third pandemic waves. DESIGN: Observational, retrospective, multicentre study. SETTING: Intensive Care Unit (ICU). PATIENTS: Adult patients admitted with COVID-19 and respiratory failure during the second and third pandemic waves. INTERVENTIONS: None. MAIN VARIABLES OF INTEREST: Collected data included demographic and clinical characteristics, comorbidities, laboratory tests and ICU outcomes. To validate our original USCM, we assigned a phenotype to each patient of the validation cohort. The performance of the classification was determined by Silhouette coefficient (SC) and general linear modelling. In a post-hoc analysis we developed and validated a USCM specific to the validation set. The model's performance was measured using accuracy test and area under curve (AUC) ROC. RESULTS: A total of 2330 patients (mean age 63 [53-82] years, 1643 (70.5%) male, median APACHE II score (12 [9-16]) and SOFA score (4 [3-6]) were included. The ICU mortality was 27.2%. The USCM classified patients into 3 clinical phenotypes: A (n = 1206 patients, 51.8%); B (n = 618 patients, 26.5%), and C (n = 506 patients, 21.7%). The characteristics of patients within each phenotype were significantly different from the original population. The SC was -0.007 and the inclusion of phenotype classification in a regression model did not improve the model performance (0.79 and 0.78 ROC for original and validation model). The post-hoc model performed better than the validation model (SC -0.08). CONCLUSION: Models developed using machine learning techniques during the first pandemic wave cannot be applied with adequate performance to patients admitted in subsequent waves without prior validation.


Assuntos
COVID-19 , Estado Terminal , Unidades de Terapia Intensiva , Humanos , COVID-19/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Idoso de 80 Anos ou mais , Unidades de Terapia Intensiva/estatística & dados numéricos , Pandemias , Análise por Conglomerados , APACHE , Mortalidade Hospitalar , SARS-CoV-2 , Insuficiência Respiratória , Escores de Disfunção Orgânica
5.
J Infect ; 85(4): 374-381, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35781017

RESUMO

BACKGROUND: Procalcitonin (PCT) and C-Reactive Protein (CRP) are useful biomarkers to differentiate bacterial from viral or fungal infections, although the association between them and co-infection or mortality in COVID-19 remains unclear. METHODS: The study represents a retrospective cohort study of patients admitted for COVID-19 pneumonia to 84 ICUs from ten countries between (March 2020-January 2021). Primary outcome was to determine whether PCT or CRP at admission could predict community-acquired bacterial respiratory co-infection (BC) and its added clinical value by determining the best discriminating cut-off values. Secondary outcome was to investigate its association with mortality. To evaluate the main outcome, a binary logistic regression was performed. The area under the curve evaluated diagnostic performance for BC prediction. RESULTS: 4635 patients were included, 7.6% fulfilled BC diagnosis. PCT (0.25[IQR 0.1-0.7] versus 0.20[IQR 0.1-0.5]ng/mL, p<0.001) and CRP (14.8[IQR 8.2-23.8] versus 13.3 [7-21.7]mg/dL, p=0.01) were higher in BC group. Neither PCT nor CRP were independently associated with BC and both had a poor ability to predict BC (AUC for PCT 0.56, for CRP 0.54). Baseline values of PCT<0.3ng/mL, could be helpful to rule out BC (negative predictive value 91.1%) and PCT≥0.50ng/mL was associated with ICU mortality (OR 1.5,p<0.001). CONCLUSIONS: These biomarkers at ICU admission led to a poor ability to predict BC among patients with COVID-19 pneumonia. Baseline values of PCT<0.3ng/mL may be useful to rule out BC, providing clinicians a valuable tool to guide antibiotic stewardship and allowing the unjustified overuse of antibiotics observed during the pandemic, additionally PCT≥0.50ng/mL might predict worsening outcomes.


Assuntos
Infecções Bacterianas , COVID-19 , Coinfecção , Pró-Calcitonina , Infecções Respiratórias , Infecções Bacterianas/diagnóstico , Biomarcadores , Proteína C-Reativa/análise , COVID-19/diagnóstico , Coinfecção/diagnóstico , Humanos , Valor Preditivo dos Testes , Curva ROC , Estudos Retrospectivos
6.
Crit Care ; 15(1): R66, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21342489

RESUMO

INTRODUCTION: Little information exists about the impact of acute kidney injury (AKI) in critically ill patients with the pandemic 2009 influenza A (H1N1) virus infection. METHODS: We conducted a prospective, observational, multicenter study in 148 Spanish intensive care units (ICUs). Patients with chronic renal failure were excluded. AKI was defined according to Acute Kidney Injury Network (AKIN) criteria. RESULTS: A total of 661 patients were analyzed. One hundred eighteen (17.7%) patients developed AKI; of these, 37 (31.4%) of the patients with AKI were classified as AKI I, 15 (12.7%) were classified as AKI II and 66 (55.9%) were classified as AKI III, among the latter of whom 50 (75.7%) required continuous renal replacement therapy. Patients with AKI had a higher Acute Physiology and Chronic Health Evaluation II score (19.2 ± 8.3 versus 12.6 ± 5.9; P < 0.001), a higher Sequential Organ Failure Assessment score (8.7 ± 4.2 versus 4.8 ± 2.9; P < 0.001), more need for mechanical ventilation (MV) (87.3% versus 56.2%; P < 0.01, odds ratio (OR) 5.3, 95% confidence interval (CI) 3.0 to 9.4), a greater incidence of shock (75.4% versus 38.3%; P < 0.01, OR 4.9, 95% CI, 3.1 to 7.7), a greater incidence of multiorgan dysfunction syndrome (92.4% versus 54.7%; P < 0.01, OR 10.0, 95% CI, 4.9 to 20.21) and a greater incidence of coinfection (23.7% versus 14.4%; P < 0.01, OR 1.8, 95% CI, 1.1 to 3.0). In survivors, patients with AKI remained on MV longer and ICU and hospital length of stay were longer than in patients without AKI. The overall mortality was 18.8% and was significantly higher for AKI patients (44.1% versus 13.3%; P < 0.01, OR 5.1, 95% CI, 3.3 to 7.9). Logistic regression analysis was performed with AKIN criteria, and it demonstrated that among patients with AKI, only AKI III was independently associated with higher ICU mortality (P < 0.001, OR 4.81, 95% CI 2.17 to 10.62). CONCLUSIONS: In our cohort of patients with H1N1 virus infection, only those cases in the AKI III category were independently associated with mortality.


Assuntos
Injúria Renal Aguda/epidemiologia , Estado Terminal/epidemiologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/epidemiologia , Injúria Renal Aguda/mortalidade , Injúria Renal Aguda/fisiopatologia , Adulto , Estado Terminal/mortalidade , Feminino , Humanos , Influenza Humana/mortalidade , Influenza Humana/fisiopatologia , Unidades de Terapia Intensiva/tendências , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
7.
Antibiotics (Basel) ; 10(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810263

RESUMO

Background: Procalcitonin (PCT) and C-Reactive protein (CRP) are well-established sepsis biomarkers. The association of baseline PCT levels and mortality in pneumonia remains unclear, and we still do not know whether biomarkers levels could be related to the causative microorganism (GPC, GNB). The objective of this study is to address these issues. Methods: a retrospective observational cohort study was conducted in 184 Spanish ICUs (2009-2018). Results: 1608 patients with severe influenza pneumonia with PCT and CRP available levels on admission were included, 1186 with primary viral pneumonia (PVP) and 422 with bacterial Co-infection (BC). Those with BC presented higher PCT levels (4.25 [0.6-19.5] versus 0.6 [0.2-2.3]ng/mL) and CRP (36.7 [20.23-118] versus 28.05 [13.3-109]mg/dL) as compared to PVP (p < 0.001). Deceased patients had higher PCT (ng/mL) when compared with survivors, in PVP (0.82 [0.3-2.8]) versus 0.53 [0.19-2.1], p = 0.001) and BC (6.9 [0.93-28.5] versus 3.8 [0.5-17.37], p = 0.039). However, no significant association with mortality was observed in the multivariate analysis. The PCT levels (ng/mL) were significantly higher in polymicrobial infection (8.4) and GPC (6.9) when compared with GNB (1.2) and Aspergillus (1.7). The AUC-ROC of PCT for GPC was 0.67 and 0.32 for GNB. The AUROC of CRP was 0.56 for GPC and 0.39 for GNB. Conclusions: a single PCT/CRP value at ICU admission was not associated with mortality in severe influenza pneumonia. None of the biomarkers have enough discriminatory power to be used for predicting the causative microorganism of the co-infection.

8.
Lancet Reg Health Eur ; 11: 100243, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34751263

RESUMO

BACKGROUND: It is unclear whether the changes in critical care throughout the pandemic have improved the outcomes in coronavirus disease 2019 (COVID-19) patients admitted to the intensive care units (ICUs). METHODS: We conducted a retrospective cohort study in adults with COVID-19 pneumonia admitted to 73 ICUs from Spain, Andorra and Ireland between February 2020 and March 2021. The first wave corresponded with the period from February 2020 to June 2020, whereas the second/third waves occurred from July 2020 to March 2021. The primary outcome was ICU mortality between study periods. Mortality predictors and differences in mortality between COVID-19 waves were identified using logistic regression. FINDINGS: As of March 2021, the participating ICUs had included 3795 COVID-19 pneumonia patients, 2479 (65·3%) and 1316 (34·7%) belonging to the first and second/third waves, respectively. Illness severity scores predicting mortality were lower in the second/third waves compared with the first wave according with the Acute Physiology and Chronic Health Evaluation system (median APACHE II score 12 [IQR 9-16] vs 14 [IQR 10-19]) and the organ failure assessment score (median SOFA 4 [3-6] vs 5 [3-7], p<0·001). The need of invasive mechanical ventilation was high (76·1%) during the whole study period. However, a significant increase in the use of high flow nasal cannula (48·7% vs 18·2%, p<0·001) was found in the second/third waves compared with the first surge. Significant changes on treatments prescribed were also observed, highlighting the remarkable increase on the use of corticosteroids to up to 95.9% in the second/third waves. A significant reduction on the use of tocilizumab was found during the study (first wave 28·9% vs second/third waves 6·2%, p<0·001), and a negligible administration of lopinavir/ritonavir, hydroxychloroquine, and interferon during the second/third waves compared with the first wave. Overall ICU mortality was 30·7% (n = 1166), without significant differences between study periods (first wave 31·7% vs second/third waves 28·8%, p = 0·06). No significant differences were found in ICU mortality between waves according to age subsets except for the subgroup of 61-75 years of age, in whom a reduced unadjusted ICU mortality was observed in the second/third waves (first 38·7% vs second/third 34·0%, p = 0·048). Non-survivors were older, with higher severity of the disease, had more comorbidities, and developed more complications. After adjusting for confounding factors through a multivariable analysis, no significant association was found between the COVID-19 waves and mortality (OR 0·81, 95% CI 0·64-1·03; p = 0·09). Ventilator-associated pneumonia rate increased significantly during the second/third waves and it was independently associated with ICU mortality (OR 1·48, 95% CI 1·19-1·85, p<0·001). Nevertheless, a significant reduction both in the ICU and hospital length of stay in survivors was observed during the second/third waves. INTERPRETATION: Despite substantial changes on supportive care and management, we did not find significant improvement on case-fatality rates among critical COVID-19 pneumonia patients. FUNDING: Ricardo Barri Casanovas Foundation (RBCF2020) and SEMICYUC.

9.
Ann Intensive Care ; 11(1): 159, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34825976

RESUMO

BACKGROUND: Some unanswered questions persist regarding the effectiveness of corticosteroids for severe coronavirus disease 2019 (COVID-19) patients. We aimed to assess the clinical effect of corticosteroids on intensive care unit (ICU) mortality among mechanically ventilated COVID-19-associated acute respiratory distress syndrome (ARDS) patients. METHODS: This was a retrospective study of prospectively collected data conducted in 70 ICUs (68 Spanish, one Andorran, one Irish), including mechanically ventilated COVID-19-associated ARDS patients admitted between February 6 and September 20, 2020. Individuals who received corticosteroids for refractory shock were excluded. Patients exposed to corticosteroids at admission were matched with patients without corticosteroids through propensity score matching. Primary outcome was all-cause ICU mortality. Secondary outcomes were to compare in-hospital mortality, ventilator-free days at 28 days, respiratory superinfection and length of stay between patients with corticosteroids and those without corticosteroids. We performed survival analysis accounting for competing risks and subgroup sensitivity analysis. RESULTS: We included 1835 mechanically ventilated COVID-19-associated ARDS, of whom 1117 (60.9%) received corticosteroids. After propensity score matching, ICU mortality did not differ between patients treated with corticosteroids and untreated patients (33.8% vs. 30.9%; p = 0.28). In survival analysis, corticosteroid treatment at ICU admission was associated with short-term survival benefit (HR 0.53; 95% CI 0.39-0.72), although beyond the 17th day of admission, this effect switched and there was an increased ICU mortality (long-term HR 1.68; 95% CI 1.16-2.45). The sensitivity analysis reinforced the results. Subgroups of age < 60 years, severe ARDS and corticosteroids plus tocilizumab could have greatest benefit from corticosteroids as short-term decreased ICU mortality without long-term negative effects were observed. Larger length of stay was observed with corticosteroids among non-survivors both in the ICU and in hospital. There were no significant differences for the remaining secondary outcomes. CONCLUSIONS: Our results suggest that corticosteroid treatment for mechanically ventilated COVID-19-associated ARDS had a biphasic time-dependent effect on ICU mortality. Specific subgroups showed clear effect on improving survival with corticosteroid use. Therefore, further research is required to identify treatment-responsive subgroups among the mechanically ventilated COVID-19-associated ARDS patients.

10.
Expert Opin Investig Drugs ; 25(6): 653-65, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26998623

RESUMO

INTRODUCTION: Hospital acquired pneumonia (HAP) is one of the main infections acquired by patients during a stay in hospital. The main issue when dealing with patients with HAP and ventilator associated pneumonia (VAP) is the increasing role of multi-drug resistant organisms (MDROs). AREAS COVERED: In this review the authors summarize the actual situation of MDROs as a cause of HAP and VAP. They also review the current treatment options stated in the most important international guidelines. Finally, they focus on the investigational drugs that have reached the phase III stage of development and the novel compounds that are being studied in phase I and II clinical trials. EXPERT OPINION: Thanks to their excellent activity against MDROs, drugs in development for the treatment of HAP and VAP can significantly improve the therapeutic options available. In selected patients, the possibility to administer directed therapy with monoclonal antibodies to specific pathogens is an exciting strategy in the fight against widespread resistance.


Assuntos
Infecção Hospitalar/tratamento farmacológico , Drogas em Investigação/uso terapêutico , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Animais , Anticorpos Monoclonais/uso terapêutico , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Humanos , Pneumonia Associada à Ventilação Mecânica/epidemiologia , Pneumonia Associada à Ventilação Mecânica/microbiologia , Guias de Prática Clínica como Assunto
11.
Antivir Ther ; 21(2): 181-3, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26330157

RESUMO

Systemic capillary leak syndrome is a rare and potentially lethal disorder characterized by episodes of vascular hyperpermeability, which lead to shock. Although the pathogenesis is unknown, some viral infections can act as triggers. We present the first case associated with influenza A virus in adulthood, perform a literature review and discuss its treatment.


Assuntos
Síndrome de Vazamento Capilar/complicações , Vírus da Influenza A , Influenza Humana/complicações , Influenza Humana/virologia , Adulto , Antivirais/uso terapêutico , Síndrome de Vazamento Capilar/patologia , Feminino , Humanos , Oseltamivir/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA