Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 181(2): 460-474.e14, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32191846

RESUMO

Plants are foundational for global ecological and economic systems, but most plant proteins remain uncharacterized. Protein interaction networks often suggest protein functions and open new avenues to characterize genes and proteins. We therefore systematically determined protein complexes from 13 plant species of scientific and agricultural importance, greatly expanding the known repertoire of stable protein complexes in plants. By using co-fractionation mass spectrometry, we recovered known complexes, confirmed complexes predicted to occur in plants, and identified previously unknown interactions conserved over 1.1 billion years of green plant evolution. Several novel complexes are involved in vernalization and pathogen defense, traits critical for agriculture. We also observed plant analogs of animal complexes with distinct molecular assemblies, including a megadalton-scale tRNA multi-synthetase complex. The resulting map offers a cross-species view of conserved, stable protein assemblies shared across plant cells and provides a mechanistic, biochemical framework for interpreting plant genetics and mutant phenotypes.


Assuntos
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas/fisiologia , Espectrometria de Massas/métodos , Plantas/genética , Plantas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos
2.
J Cell Sci ; 134(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34060614

RESUMO

The dynamic control of the actin cytoskeleton is a key aspect of essentially all animal cell movements. Experiments in single migrating cells and in vitro systems have provided an exceptionally deep understanding of actin dynamics. However, we still know relatively little of how these systems are tuned in cell-type-specific ways, for example in the context of collective cell movements that sculpt the early embryo. Here, we provide an analysis of the actin-severing and depolymerization machinery during vertebrate gastrulation, with a focus on Twinfilin1 (Twf1) in Xenopus. We find that Twf1 is essential for convergent extension, and loss of Twf1 results in a disruption of lamellipodial dynamics and polarity. Moreover, Twf1 loss results in a failure to assemble polarized cytoplasmic actin cables, which are essential for convergent extension. These data provide an in vivo complement to our more-extensive understanding of Twf1 action in vitro and provide new links between the core machinery of actin regulation and the specialized cell behaviors of embryonic morphogenesis.


Assuntos
Actinas , Gastrulação , Citoesqueleto de Actina , Actinas/genética , Animais , Pseudópodes , Xenopus laevis
3.
Dev Biol ; 467(1-2): 108-117, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32898505

RESUMO

Cell-type specific RNA-associated proteins are essential for development and homeostasis in animals. Despite a massive recent effort to systematically identify RNA-associated proteins, we currently have few comprehensive rosters of cell-type specific RNA-associated proteins in vertebrate tissues. Here, we demonstrate the feasibility of determining the RNA-associated proteome of a defined vertebrate embryonic tissue using DIF-FRAC, a systematic and universal (i.e., label-free) method. Application of DIF-FRAC to cultured tissue explants of Xenopus mucociliary epithelium identified dozens of known RNA-associated proteins as expected, but also several novel RNA-associated proteins, including proteins related to assembly of the mitotic spindle and regulation of ciliary beating. In particular, we show that the inner dynein arm tether Cfap44 is an RNA-associated protein that localizes not only to axonemes, but also to liquid-like organelles in the cytoplasm called DynAPs. This result led us to discover that DynAPs are generally enriched for RNA. Together, these data provide a useful resource for a deeper understanding of mucociliary epithelia and demonstrate that DIF-FRAC will be broadly applicable for systematic identification of RNA-associated proteins from embryonic tissues.


Assuntos
Cílios/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Epitélio/embriologia , Técnicas de Cultura de Tecidos , Xenopus
4.
Nature ; 525(7569): 339-44, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26344197

RESUMO

Macromolecular complexes are essential to conserved biological processes, but their prevalence across animals is unclear. By combining extensive biochemical fractionation with quantitative mass spectrometry, here we directly examined the composition of soluble multiprotein complexes among diverse metazoan models. Using an integrative approach, we generated a draft conservation map consisting of more than one million putative high-confidence co-complex interactions for species with fully sequenced genomes that encompasses functional modules present broadly across all extant animals. Clustering reveals a spectrum of conservation, ranging from ancient eukaryotic assemblies that have probably served cellular housekeeping roles for at least one billion years, ancestral complexes that have accrued contemporary components, and rarer metazoan innovations linked to multicellularity. We validated these projections by independent co-fractionation experiments in evolutionarily distant species, affinity purification and functional analyses. The comprehensiveness, centrality and modularity of these reconstructed interactomes reflect their fundamental mechanistic importance and adaptive value to animal cell systems.


Assuntos
Evolução Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mapas de Interação de Proteínas , Animais , Conjuntos de Dados como Assunto , Humanos , Mapeamento de Interação de Proteínas , Reprodutibilidade dos Testes , Biologia de Sistemas , Espectrometria de Massas em Tandem
5.
PLoS Biol ; 13(2): e1002083, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25710520

RESUMO

In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of U3 from the pre-ribosome, thereby trapping a pre-40S particle. This particle had not yet achieved its mature structure because it contained U3, pre-rRNA, and a number of early-acting ribosome synthesis factors but noticeably lacked ribosomal proteins (r-proteins) that surround the CPK. Dhr1 was cross-linked in vivo to the pre-rRNA and to U3 sequences flanking regions that base-pair to the pre-rRNA including those that form the CPK. Point mutations in the box A region of U3 suppressed a cold-sensitive mutation of Dhr1, strongly indicating that U3 is an in vivo substrate of Dhr1. To support the conclusions derived from in vivo analysis we showed that Dhr1 unwinds U3-18S duplexes in vitro by using a mechanism reminiscent of DEAD box proteins.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação Fúngica da Expressão Gênica , Precursores de RNA/metabolismo , RNA Nucleolar Pequeno/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Pareamento de Bases , Sequência de Bases , Temperatura Baixa , RNA Helicases DEAD-box/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Mutação Puntual , Biossíntese de Proteínas , Precursores de RNA/química , Precursores de RNA/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
PLoS Comput Biol ; 11(8): e1004400, 2015 08.
Artigo em Inglês | MEDLINE | ID: mdl-26275208

RESUMO

How do bacteria regulate their cellular physiology in response to starvation? Here, we present a detailed characterization of Escherichia coli growth and starvation over a time-course lasting two weeks. We have measured multiple cellular components, including RNA and proteins at deep genomic coverage, as well as lipid modifications and flux through central metabolism. Our study focuses on the physiological response of E. coli in stationary phase as a result of being starved for glucose, not on the genetic adaptation of E. coli to utilize alternative nutrients. In our analysis, we have taken advantage of the temporal correlations within and among RNA and protein abundances to identify systematic trends in gene regulation. Specifically, we have developed a general computational strategy for classifying expression-profile time courses into distinct categories in an unbiased manner. We have also developed, from dynamic models of gene expression, a framework to characterize protein degradation patterns based on the observed temporal relationships between mRNA and protein abundances. By comparing and contrasting our transcriptomic and proteomic data, we have identified several broad physiological trends in the E. coli starvation response. Strikingly, mRNAs are widely down-regulated in response to glucose starvation, presumably as a strategy for reducing new protein synthesis. By contrast, protein abundances display more varied responses. The abundances of many proteins involved in energy-intensive processes mirror the corresponding mRNA profiles while proteins involved in nutrient metabolism remain abundant even though their corresponding mRNAs are down-regulated.


Assuntos
Escherichia coli/metabolismo , Escherichia coli/fisiologia , Glucose/metabolismo , Biologia de Sistemas/métodos , Algoritmos , Escherichia coli/citologia , Escherichia coli/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia
7.
Mol Biol Cell ; 35(3): ar39, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170584

RESUMO

DIFFRAC is a powerful method for systematically comparing proteome content and organization between samples in a high-throughput manner. By subjecting control and experimental protein extracts to native chromatography and quantifying the contents of each fraction using mass spectrometry, it enables the quantitative detection of alterations to protein complexes and abundances. Here, we applied DIFFRAC to investigate the consequences of genetic loss of Ift122, a subunit of the intraflagellar transport-A (IFT-A) protein complex that plays a vital role in the formation and function of cilia and flagella, on the proteome of Tetrahymena thermophila. A single DIFFRAC experiment was sufficient to detect changes in protein behavior that mirrored known effects of IFT-A loss and revealed new biology. We uncovered several novel IFT-A-regulated proteins, which we validated through live imaging in Xenopus multiciliated cells, shedding new light on both the ciliary and non-ciliary functions of IFT-A. Our findings underscore the robustness of DIFFRAC for revealing proteomic changes in response to genetic or biochemical perturbation.


Assuntos
Proteoma , Proteômica , Transporte Proteico/fisiologia , Proteoma/metabolismo , Transporte Biológico/fisiologia , Cílios/metabolismo , Flagelos/metabolismo , Fenótipo
8.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853926

RESUMO

All eukaryotes share a common ancestor from roughly 1.5 - 1.8 billion years ago, a single-celled, swimming microbe known as LECA, the Last Eukaryotic Common Ancestor. Nearly half of the genes in modern eukaryotes were present in LECA, and many current genetic diseases and traits stem from these ancient molecular systems. To better understand these systems, we compared genes across modern organisms and identified a core set of 10,092 shared protein-coding gene families likely present in LECA, a quarter of which are uncharacterized. We then integrated >26,000 mass spectrometry proteomics analyses from 31 species to infer how these proteins interact in higher-order complexes. The resulting interactome describes the biochemical organization of LECA, revealing both known and new assemblies. We analyzed these ancient protein interactions to find new human gene-disease relationships for bone density and congenital birth defects, demonstrating the value of ancestral protein interactions for guiding functional genetics today.

9.
Development ; 137(24): 4201-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21068064

RESUMO

The molecular mechanisms driving the conserved metazoan developmental shift referred to as the mid-blastula transition (MBT) remain mysterious. Typically, cleavage divisions give way to longer asynchronous cell cycles with the acquisition of a gap phase. In Drosophila, rapid synchronous nuclear divisions must pause at the MBT to allow the formation of a cellular blastoderm through a special form of cytokinesis termed cellularization. Drosophila Fragile X mental retardation protein (dFMRP; FMR1), a transcript-specific translational regulator, is required for cellularization. The role of FMRP has been most extensively studied in the nervous system because the loss of FMRP activity in neurons causes the misexpression of specific mRNAs required for synaptic plasticity, resulting in mental retardation and autism in humans. Here, we show that in the early embryo dFMRP associates specifically with Caprin, another transcript-specific translational regulator implicated in synaptic plasticity, and with eIF4G, a key regulator of translational initiation. dFMRP and Caprin collaborate to control the cell cycle at the MBT by directly mediating the normal repression of maternal Cyclin B mRNA and the activation of zygotic frühstart mRNA. These findings identify two new targets of dFMRP regulation and implicate conserved translational regulatory mechanisms in processes as diverse as learning, memory and early embryonic development.


Assuntos
Ciclo Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Drosophila/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Ciclina B/genética , Drosophila/citologia , Proteínas de Drosophila/genética , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ligação Proteica
10.
Commun Biol ; 6(1): 421, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061613

RESUMO

A major goal in structural biology is to understand protein assemblies in their biologically relevant states. Here, we investigate whether AlphaFold2 structure predictions match native protein conformations. We chemically cross-linked proteins in situ within intact Tetrahymena thermophila cilia and native ciliary extracts, identifying 1,225 intramolecular cross-links within the 100 best-sampled proteins, providing a benchmark of distance restraints obeyed by proteins in their native assemblies. The corresponding structure predictions were highly concordant, positioning 86.2% of cross-linked residues within Cɑ-to-Cɑ distances of 30 Å, consistent with the cross-linker length. 43% of proteins showed no violations. Most inconsistencies occurred in low-confidence regions or between domains. Overall, AlphaFold2 predictions with lower predicted aligned error corresponded to more correct native structures. However, we observe cases where rigid body domains are oriented incorrectly, as for ciliary protein BBC118, suggesting that combining structure prediction with experimental information will better reveal biologically relevant conformations.


Assuntos
Proteínas , Proteínas/química , Conformação Proteica , Espectrometria de Massas/métodos
11.
Front Plant Sci ; 14: 1252564, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780492

RESUMO

Hybrid vigor or heterosis has been widely applied in agriculture and extensively studied using genetic and gene expression approaches. However, the biochemical mechanism underlying heterosis remains elusive. One theory suggests that a decrease in protein aggregation may occur in hybrids due to the presence of protein variants between parental alleles, but it has not been experimentally tested. Here, we report comparative analysis of soluble and insoluble proteomes in Arabidopsis intraspecific and interspecific hybrids or allotetraploids formed between A. thaliana and A. arenosa. Both allotetraploids and intraspecific hybrids displayed nonadditive expression (unequal to the sum of the two parents) of the proteins, most of which were involved in biotic and abiotic stress responses. In the allotetraploids, homoeolog-expression bias was not observed among all proteins examined but accounted for 17-20% of the nonadditively expressed proteins, consistent with the transcriptome results. Among expression-biased homoeologs, there were more A. thaliana-biased than A. arenosa-biased homoeologs. Analysis of the insoluble and soluble proteomes revealed more soluble proteins in the hybrids than their parents but not in the allotetraploids. Most proteins in ribosomal biosynthesis and in the thylakoid lumen, membrane, and stroma were in the soluble fractions, indicating a role of protein stability in photosynthetic activities for promoting growth. Thus, nonadditive expression of stress-responsive proteins and increased solubility of photosynthetic proteins may contribute to heterosis in Arabidopsis hybrids and allotetraploids and possibly hybrid crops.

12.
bioRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945534

RESUMO

DIFFRAC is a powerful method for systematically comparing proteome content and organization between samples in a high-throughput manner. By subjecting control and experimental protein extracts to native chromatography and quantifying the contents of each fraction using mass spectrometry, it enables the quantitative detection of alterations to protein complexes and abundances. Here, we applied DIFFRAC to investigate the consequences of genetic loss of Ift122, a subunit of the intraflagellar transport-A (IFT-A) protein complex that plays a vital role in the formation and function of cilia and flagella, on the proteome of Tetrahymena thermophila . A single DIFFRAC experiment was sufficient to detect changes in protein behavior that mirrored known effects of IFT-A loss and revealed new biology. We uncovered several novel IFT-A-regulated proteins, which we validated through live imaging in Xenopus multiciliated cells, shedding new light on both the ciliary and non-ciliary functions of IFT-A. Our findings underscore the robustness of DIFFRAC for revealing proteomic changes in response to genetic or biochemical perturbation.

13.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37781579

RESUMO

Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain myriad different proteins that assemble into an array of distinct machines, so understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry (XL/MS) in Tetrahymena thermophila. From over 19,000 XLs, we identified 4,757 unique amino acid interactions among 1,143 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the Intraflagellar Transport system, axonemal dynein arms, radial spokes, the 96 nm ruler, and microtubule inner proteins, among others. Guided by this dataset, we used vertebrate multiciliated cells to reveal novel functional interactions among several poorly-defined human ciliopathy proteins. The dataset therefore provides a powerful resource for studying the basic biology of an ancient organelle and the molecular etiology of human genetic disease.

14.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398254

RESUMO

Cilia are hairlike protrusions that project from the surface of eukaryotic cells and play key roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and regulates and coordinates the activity of outer doublet complexes. Despite its critical role in cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly understood. Here, utilizing cryo-electron microscopy in conjunction with biochemical cross-linking and integrative modeling, we localized 12 DRC subunits in the N-DRC structure of Tetrahymena thermophila . We also found that the CCDC96/113 complex is in close contact with the N-DRC. In addition, we revealed that the N-DRC is associated with a network of coiled-coil proteins that most likely mediates N-DRC regulatory activity.

15.
Nat Commun ; 14(1): 5741, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714832

RESUMO

Cilia are hairlike protrusions that project from the surface of eukaryotic cells and play key roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and regulates and coordinates the activity of outer doublet complexes. Despite its critical role in cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly understood. Here, using cryo-electron microscopy in conjunction with biochemical cross-linking and integrative modeling, we localize 12 DRC subunits in the N-DRC structure of Tetrahymena thermophila. We also find that the CCDC96/113 complex is in close contact with the DRC9/10 in the linker region. In addition, we reveal that the N-DRC is associated with a network of coiled-coil proteins that most likely mediates N-DRC regulatory activity.


Assuntos
Dineínas , Proteínas Associadas aos Microtúbulos , Microscopia Crioeletrônica , Citoesqueleto , Axonema , Proteínas Amiloidogênicas
16.
Nat Cell Biol ; 7(6): 612-8, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15908943

RESUMO

Drosophila melanogaster cellularization is a dramatic form of cytokinesis in which a membrane furrow simultaneously encapsulates thousands of cortical nuclei of the syncytial embryo to generate a polarized cell layer. Formation of this cleavage furrow depends on Golgi-based secretion and microtubules. During cellularization, specific Golgi move along microtubules, first to sites of furrow formation and later to accumulate within the apical cytoplasm of the newly forming cells. Here we show that Golgi movements and furrow formation depend on cytoplasmic dynein. Furthermore, we demonstrate that Lava lamp (Lva), a golgin protein that is required for cellularization, specifically associates with dynein, dynactin, cytoplasmic linker protein-190 (CLIP-190) and Golgi spectrin, and is required for the dynein-dependent targeting of the secretory machinery. The Lva domains that bind these microtubule-dependent motility factors inhibit Golgi movement and cellularization in a live embryo injection assay. Our results provide new evidence that golgins promote dynein-based motility of Golgi membranes.


Assuntos
Citocinese/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Complexo de Golgi/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Complexo Dinactina , Embrião não Mamífero/citologia , Desenvolvimento Embrionário/fisiologia , Feminino , Complexo de Golgi/ultraestrutura , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Espectrina/metabolismo
17.
Dev Cell ; 57(9): 1119-1131.e5, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35476939

RESUMO

The design of an animal's body plan is encoded in the genome, and the execution of this program is a mechanical progression involving coordinated movement of proteins, cells, and whole tissues. Thus, a challenge to understanding morphogenesis is connecting events that occur across various length scales. Here, we describe how a poorly characterized adhesion effector, Arvcf catenin, controls Xenopus head-to-tail axis extension. We find that Arvcf is required for axis extension within the intact organism but not within isolated tissues. We show that the organism-scale phenotype results from a defect in tissue-scale force production. Finally, we determine that the force defect results from the dampening of the pulsatile recruitment of cell adhesion and cytoskeletal proteins to membranes. These results provide a comprehensive understanding of Arvcf function during axis extension and produce an insight into how a cellular-scale defect in adhesion results in an organism-scale failure of development.


Assuntos
Proteínas do Domínio Armadillo , Cateninas , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Morfogênese , Fosfoproteínas/metabolismo , Xenopus laevis/metabolismo
18.
Elife ; 112022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36346217

RESUMO

Intraflagellar transport (IFT) is a conserved process of cargo transport in cilia that is essential for development and homeostasis in organisms ranging from algae to vertebrates. In humans, variants in genes encoding subunits of the cargo-adapting IFT-A and IFT-B protein complexes are a common cause of genetic diseases known as ciliopathies. While recent progress has been made in determining the atomic structure of IFT-B, little is known of the structural biology of IFT-A. Here, we combined chemical cross-linking mass spectrometry and cryo-electron tomography with AlphaFold2-based prediction of both protein structures and interaction interfaces to model the overall architecture of the monomeric six-subunit IFT-A complex, as well as its polymeric assembly within cilia. We define monomer-monomer contacts and membrane-associated regions available for association with transported cargo, and we also use this model to provide insights into the pleiotropic nature of human ciliopathy-associated genetic variants in genes encoding IFT-A subunits. Our work demonstrates the power of integration of experimental and computational strategies both for multi-protein structure determination and for understanding the etiology of human genetic disease.


Assuntos
Cílios , Ciliopatias , Humanos , Animais , Transporte Biológico , Tomografia com Microscopia Eletrônica , Homeostase
19.
Cell Rep ; 40(3): 111103, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858567

RESUMO

Red blood cells (RBCs) (erythrocytes) are the simplest primary human cells, lacking nuclei and major organelles and instead employing about a thousand proteins to dynamically control cellular function and morphology in response to physiological cues. In this study, we define a canonical RBC proteome and interactome using quantitative mass spectrometry and machine learning. Our data reveal an RBC interactome dominated by protein homeostasis, redox biology, cytoskeletal dynamics, and carbon metabolism. We validate protein complexes through electron microscopy and chemical crosslinking and, with these data, build 3D structural models of the ankyrin/Band 3/Band 4.2 complex that bridges the spectrin cytoskeleton to the RBC membrane. The model suggests spring-like compression of ankyrin may contribute to the characteristic RBC cell shape and flexibility. Taken together, our study provides an in-depth view of the global protein organization of human RBCs and serves as a comprehensive resource for future research.


Assuntos
Anquirinas , Eritrócitos , Anquirinas/metabolismo , Citoesqueleto/metabolismo , Eritrócitos/metabolismo , Humanos , Proteoma/metabolismo , Espectrina/metabolismo
20.
STAR Protoc ; 2(1): 100370, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33748783

RESUMO

Co-fractionation/mass spectrometry (CF/MS) is a flexible and powerful method to detect physical associations of proteins. CF/MS can be applied to any tissue or organism without the need for protein-specific antibodies or epitope tags. Here, we outline two alternate protocols for MS preparation of samples (containing low or high salt) and a computational pipeline (cfmsflow) that together allow the successful application of this approach. These protocols are based on CF/MS of over 16 diverse organisms including plants and animals. For complete details on the use and execution of this protocol, please refer to McWhite et al. (2020).


Assuntos
Fracionamento Celular/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Animais , Fracionamento Químico , Humanos , Plantas , Proteoma/análise , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA