Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834778

RESUMO

Glioblastoma cells adapt to changes in glucose availability through metabolic plasticity allowing for cell survival and continued progression in low-glucose concentrations. However, the regulatory cytokine networks that govern the ability to survive in glucose-starved conditions are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma survival, proliferation and invasion when cells are starved of glucose. We identified enhanced IL-11/IL-11Rα expression correlated with reduced overall survival in glioblastoma patients. Glioblastoma cell lines over-expressing IL-11Rα displayed greater survival, proliferation, migration and invasion in glucose-free conditions compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα reversed these pro-tumorigenic characteristics. In addition, these IL-11Rα-over-expressing cells displayed enhanced glutamine oxidation and glutamate production compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα or the pharmacological inhibition of several members of the glutaminolysis pathway resulted in reduced survival (enhanced apoptosis) and reduced migration and invasion. Furthermore, IL-11Rα expression in glioblastoma patient samples correlated with enhanced gene expression of the glutaminolysis pathway genes GLUD1, GSS and c-Myc. Overall, our study identified that the IL-11/IL-11Rα pathway promotes glioblastoma cell survival and enhances cell migration and invasion in environments of glucose starvation via glutaminolysis.


Assuntos
Glioblastoma , Humanos , Linhagem Celular , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glucose/metabolismo , Interleucina-11/metabolismo , Receptores de Interleucina-11
2.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281166

RESUMO

Cetuximab is a common treatment option for patients with wild-type K-Ras colorectal carcinoma. However, patients often display intrinsic resistance or acquire resistance to cetuximab following treatment. Here we generate two human CRC cells with acquired resistance to cetuximab that are derived from cetuximab-sensitive parental cell lines. These cetuximab-resistant cells display greater in vitro proliferation, colony formation and migration, and in vivo tumour growth compared with their parental counterparts. To evaluate potential alternative therapeutics to cetuximab-acquired-resistant cells, we tested the efficacy of 38 current FDA-approved agents against our cetuximab-acquired-resistant clones. We identified carfilzomib, a selective proteosome inhibitor to be most effective against our cell lines. Carfilzomib displayed potent antiproliferative effects, induced the unfolded protein response as determined by enhanced CHOP expression and ATF6 activity, and enhanced apoptosis as determined by enhanced caspase-3/7 activity. Overall, our results indicate a potentially novel indication for carfilzomib: that of a potential alternative agent to treat cetuximab-resistant colorectal cancer.


Assuntos
Neoplasias Colorretais/metabolismo , Oligopeptídeos/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cetuximab/farmacologia , Neoplasias Colorretais/fisiopatologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Oligopeptídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Resposta a Proteínas não Dobradas/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Neurooncol ; 149(3): 401, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33026635

RESUMO

For the reference citation '[57]' in the second paragraph of the Results section of the original article there was no corresponding entry in the References section. It should have referred to the below mentioned article by Ebrahimkhani et al. (2018).

4.
J Neurooncol ; 149(3): 391-400, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32915353

RESUMO

PURPOSE: A circulating biomarker has potential to provide more accurate information for glioma progression post treatment, however no such biomarker is currently available. We aimed to discover a microRNA serum biomarker for longitudinal monitoring of glioma patients. METHODS: A prospectively collected cohort of 91 glioma patients and 17 healthy controls underwent pre and post-operative serum miRNA profiling using Nanostring®. Differentially expressed miRNAs were discovered using a machine learning random forest analysis. Candidate miRNAs were then assessed by droplet digital PCR in 11 patients with multiple follow up samples and compared to tumor volume based on magnetic resonance imaging. RESULTS: A 9-gene miRNA signature was identified that could distinguish between glioma and healthy controls with 99.8% accuracy. Two miRNAs miR-223 and miR-320e, best demonstrated dynamic changes that correlated closely with tumor volume in LGG and GBM respectively. Importantly, miRNA levels did not increase in two cases of pseudo-progression, indicating the potential utility of this test in guiding treatment decisions. CONCLUSIONS: We identified a highly accurate 9-miRNA signature associated with glioma serum. Additionally, we observed dynamic changes in specific miRNAs correlating with tumor volume over long-term follow up. These results support a large prospective validation study of serum miRNA biomarkers in glioma.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/sangue , Glioma/sangue , MicroRNAs/genética , Recidiva Local de Neoplasia/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Feminino , Seguimentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Glioma/cirurgia , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Estudos Prospectivos , Adulto Jovem
5.
Cancer Invest ; 37(3): 144-155, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30907150

RESUMO

Glioma stem cells (GSCs) play major roles in drug resistance, tumour maintenance and recurrence of glioblastoma. We investigated inhibition of the GTPase dynamin 2 as a therapy for glioblastoma. Glioma cell lines and patient-derived GSCs were treated with dynamin inhibitors, Dynole 34-2 and CyDyn 4-36. We studied about cell viability, and GSC neurosphere formation in vitro and orthotopic tumour growth in vivo. Dynamin inhibition reduced glioblastoma cell line viability and suppressed neurosphere formation and migration of GSCs. Tumour growth was reduced by CyDyn 4-36 treatment. Dynamin 2 inhibition therefore represents a novel approach for stem cell-directed Glioblastoma therapy.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Cianoacrilatos/uso terapêutico , Dinamina II/antagonistas & inibidores , Glioma/tratamento farmacológico , Indóis/uso terapêutico , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dinamina II/metabolismo , Glioma/metabolismo , Glioma/patologia , Humanos , Terapia de Alvo Molecular/métodos , Células-Tronco Neoplásicas/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancers (Basel) ; 13(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801941

RESUMO

Reticulocalbin 1 (RCN1) is an endoplasmic reticulum (ER)-residing protein, involved in promoting cell survival during pathophysiological conditions that lead to ER stress. However, the key upstream receptor tyrosine kinase that regulates RCN1 expression and its potential role in cell survival in the glioblastoma setting have not been determined. Here, we demonstrate that RCN1 expression significantly correlates with poor glioblastoma patient survival. We also demonstrate that glioblastoma cells with expression of EGFRvIII receptor also have high RCN1 expression. Over-expression of wildtype EGFR also correlated with high RCN1 expression, suggesting that EGFR and EGFRvIII regulate RCN1 expression. Importantly, cells that expressed EGFRvIII and subsequently showed high RCN1 expression displayed greater cell viability under ER stress compared to EGFRvIII negative glioblastoma cells. Consistently, we also demonstrated that RCN1 knockdown reduced cell viability and exogenous introduction of RCN1 enhanced cell viability following induction of ER stress. Mechanistically, we demonstrate that the EGFRvIII-RCN1-driven increase in cell survival is due to the inactivation of the ER stress markers ATF4 and ATF6, maintained expression of the anti-apoptotic protein Bcl-2 and reduced activity of caspase 3/7. Our current findings identify that EGFRvIII regulates RCN1 expression and that this novel association promotes cell survival in glioblastoma cells during ER stress.

7.
Sci Rep ; 10(1): 17768, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082482

RESUMO

Despite aggressive treatment with temozolomide and radiotherapy and extensive research into alternative therapies there has been little improvement in Glioblastoma patient survival. Median survival time remains between 12 and 15 months mainly due to treatment resistance and tumor recurrence. In this study, we aimed to explore the underlying mechanisms behind treatment resistance and the lack of success with anti-EGFR therapy in the clinic. After generating a number of treatment resistant Glioblastoma cell lines we observed that resistant cell lines lacked EGFR activation and expression. Furthermore, cell viability assays showed resistant cells were significantly less sensitive to the anti-EGFR agents when compared to parental cell lines. To further characterise the resistance mechanism in our cells microRNA prediction software identified miR-221 as a negative regulator of EGFR expression. miR-221 was up-regulated in our resistant cell lines, and this up-regulation led to a significant reduction in EGFR expression in both our cultured cell lines and a large cohort of glioblastoma patient tumor tissue.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Quimiorradioterapia/métodos , Glioblastoma/tratamento farmacológico , MicroRNAs/genética , Temozolomida/farmacologia , Apoptose , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Recidiva Local de Neoplasia , Transdução de Sinais
8.
J Neurosurg ; 129(3): 598-610, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29148898

RESUMO

OBJECTIVE Glioblastoma is the most common primary central nervous system tumor in adults. These tumors are highly invasive and infiltrative and result in tumor recurrence as well as an extremely poor patient prognosis. The current standard of care involves surgery, radiotherapy, and chemotherapy. However, previous studies have suggested that glioblastoma cells that survive treatment are potentially more invasive. The goal of this study was to investigate whether this increased phenotype in surviving cells is facilitated by actin-rich, membrane-based structures known as invadopodia. METHODS A number of commercially available cell lines and glioblastoma cell lines obtained from patients were initially screened for the protein expression levels of invadopodia regulators. Gelatin-based zymography was also used to establish their secretory protease profile. The effects of radiation and temozolomide treatment on the glioblastoma cells were then investigated with cell viability, Western blotting, gelatin-based zymography, and invadopodia matrix degradation assays. RESULTS The authors' results show that the glioma cells used in this study express a number of invadopodia regulators, secrete MMP-2, and form functional matrix-degrading invadopodia. Cells that were treated with radiotherapy and temozolomide were observed to show an increase primarily in the activation of MMP-2. Importantly, this also resulted in a significant enhancement in the invadopodia-facilitated matrix-degrading ability of the cells, along with an increase in the percentage of cells with invadopodia after radiation and temozolomide treatment. CONCLUSIONS The data from this study suggest that the increased invasive phenotype that has been previously observed in glioma cells posttreatment is mediated by invadopodia. The authors propose that if the formation or activity of these structures can be disrupted, they could potentially serve as a viable target for developing novel adjuvant therapeutic strategies that can be used in conjunction with the current treatment protocols in combatting the invasive phenotype of this deadly disease.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Podossomos/efeitos dos fármacos , Podossomos/efeitos da radiação , Temozolomida/farmacologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Terapia Combinada , Relação Dose-Resposta a Droga , Glioblastoma/terapia , Humanos , Invasividade Neoplásica/patologia , Fenótipo , Dosagem Radioterapêutica
9.
Transl Oncol ; 11(6): 1406-1418, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30219696

RESUMO

The most common primary central nervous system tumor in adults is the glioblastoma multiforme (GBM). The highly invasive nature of GBM cells is a significant factor resulting in the inevitable tumor recurrence and poor patient prognosis. Tumor cells utilize structures known as invadopodia to faciliate their invasive phenotype. In this study, utilizing an array of techniques, including gelatin matrix degradation assays, we show that GBM cell lines can form functional gelatin matrix degrading invadopodia and secrete matrix metalloproteinase 2 (MMP-2), a known invadopodia-associated matrix-degrading enzyme. Furthermore, these cellular activities were augmented in cells that survived radiotherapy and temozolomide treatment, indicating that surviving cells may possess a more invasive phenotype posttherapy. We performed a screen of FDA-approved agents not previously used for treating GBM patients with the aim of investigating their "anti-invadopodia" and cytotoxic effects in GBM cell lines and identified a number that reduced cell viability, as well as agents which also reduced invadopodia activity. Importantly, two of these, pacilitaxel and vinorelbine tartrate, reduced radiation/temozolomide-induced invadopodia activity. Our data demonstrate the value of testing previously approved drugs (repurposing) as potential adjuvant agents for the treatment of GBM patients to reduce invadopodia activity, inhibit GBM cell invasion, and potentially improve patient outcome.

10.
Cancers (Basel) ; 10(12)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572654

RESUMO

Signal transducer and activator of transcription 3 (STAT3) signaling is a major driver of colorectal cancer (CRC) growth, however therapeutics, which can effectively target this pathway, have so far remained elusive. Here, we performed an extensive screen for STAT3 inhibitors among a library of 1167 FDA-approved agents, identifying Ponatinib as a lead candidate. We found that Ponatinib inhibits STAT3 activity driven by EGF/EGFR, IL-6/IL-6R and IL-11/IL-11R, three major ligand/receptor systems involved in CRC development and progression. Ponatinib was able to inhibit CRC migration and tumor growth in vivo. In addition, Ponatinib displayed a greater ability to inhibit STAT3 activity and mediated superior anti-proliferative efficacy compared to five FDA approved SRC and Janus Kinase (JAK) inhibitors. Finally, long-term exposure of CRC cells to Ponatinib, Dasatinib and Bosutinib resulted in acquired resistance to Dasatinib and Bosutinib occurring within six weeks. However, acquired resistance to Ponatinib was observed after long-term exposure of >4 months. Overall, our results identify a novel anti-STAT3 property of Ponatinib and thus, Ponatinib offers a potential therapeutic strategy for CRC.

11.
PLoS One ; 13(2): e0189452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29444091

RESUMO

Glioma is the most common malignant intracranial tumour. Recently, several publications have suggested that miRNAs can be used as potential diagnostic biomarkers of glioma. Here we performed a meta-analysis to identify the diagnostic accuracy of differentially expressed circulating miRNAs in gliomas. Using PubMed, Medline and Cochrane databases, we searched for studies which evaluated a single or panel of miRNAs from circulating blood as potential biomarkers of glioma. Sixteen publications involving 23 studies of miRNAs from serum or plasma met our criteria and were included in this meta-analysis. The pooled diagnostic parameters were calculated by random effect models and overall diagnostic performance of altered miRNAs was illustrated by the summary receiver operator characteristic (SROC) curves. The pooled sensitivity, specificity, positive likelihood ratio (PLR) and negative likelihood ratio (NLR) from each study were calculated. The pooled PLR, NLR and Diagnostic Odds Ratio were 6.39 (95% CI, 4.61-8.87), 0.15 (95% CI, 0.11-0.21) and 41.91 (95% CI, 23.15-75.88), respectively. The pooled sensitivity, specificity and area under the curve (AUC) were 0.87 (95% CI, 0.82-0.91), 0.86 (95% CI, 0.82-0.90) and 0.93 (95% CI, 0.91-0.95), respectively. This meta-analysis demonstrated that circulating miRNAs are capable of distinguishing glioma from healthy controls. Circulating miRNAs are promising diagnostic biomarkers for glioma and can potentially be used as a non-invasive early detection.


Assuntos
Biomarcadores/sangue , Neoplasias Encefálicas/sangue , Glioma/sangue , MicroRNAs/sangue , Humanos
12.
Med Oncol ; 33(5): 53, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27098175

RESUMO

Glioblastoma multiforme is the most aggressive and lethal tumor of the central nervous system with limited treatment strategies on offer, and as such the identification of effective novel therapeutic agents is paramount. To examine the efficacy of proteasome inhibitors, we tested bortezomib, carfilzomib, nafamostat mesylate, gabexate mesylate and acetylsalicylic acid on glioblastoma cell viability, migration and invasion. Both bortezomib and carfilzomib produced significant reduction of cell viability, while nafamostat mesylate, gabexate mesylate and acetylsalicylic acid did not. Subsequent testing showed that carfilzomib significantly reduced cell viability at nM concentrations. Carfilzomib also reduced cell migration, secretion and activation of MMP2 and also cell invasion of all four glioblastoma cells tested. In summary, carfilzomib represents a novel, yet FDA-approved agent for the treatment of glioblastoma multiforme.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Bortezomib/farmacologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/patologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA