Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38792223

RESUMO

We present a Raman spectroscopy study of the vibrational properties of free-base meso-tetra(4-pyridyl) porphyrin polycrystals under various temperature and hydrostatic pressure conditions. The combination of experimental results and Density Functional Theory (DFT) calculations allows us to assign most of the observed Raman bands. The modifications in the Raman spectra when excited with 488 nm and 532 nm laser lights indicate that a resonance effect in the Qy band is taking place. The pressure-dependent results show that the resonance conditions change with increasing pressure, probably due to the shift of the electronic transitions. The temperature-dependent results show that the relative intensities of the Raman modes change at low temperatures, while no frequency shifts are observed. The experimental and theoretical analysis presented here suggest that these molecules are well represented by the C2v point symmetry group.

2.
Inorg Chem ; 61(51): 20886-20895, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36520079

RESUMO

The synthesis and investigation of the physicochemical properties of a novel one-dimensional (1D) hybrid organic-inorganic perovskitoid templated by the 1,1,1-trimethylhydrazinium (Me3Hy+) cation are reported. (Me3Hy)[PbI3] crystallizes in the hexagonal P63/m symmetry and undergoes two phase transitions (PTs) during heating (cooling) at 322 (320) and 207 (202) K. X-ray diffraction data and temperature-dependent vibrational studies show that the second-order PT to the high-temperature hexagonal P63/mmc phase is associated with a weak change in entropy and is related to weak structural changes and different confinement of cations in the available space. The second PT to the low-temperature orthorhombic Pbca phase that corresponds to the high change in entropy and dielectric switching is associated with an ordering of the trimethylhydrazinium cations, re-arrangement and strengthening of hydrogen bonds, and slightly shifted lead-iodide octahedral chains. The high-pressure Raman data revealed two additional PTs, one between 2.8 and 3.2 GPa, related to the symmetry decrease, ordering of the cations, and inorganic chain distortion, and the other in the 6.4-6.8 GPa range related to the partial and reversible amorphization. Optical studies revealed that (Me3Hy)[PbI3] has a wide band gap (3.20 eV) and emits reddish-orange excitonic emission at low temperatures with an activation energy of 65 meV.

3.
Inorg Chem ; 61(35): 14086-14094, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36007250

RESUMO

A2M3O12-type ceramics are potentially useful in a variety of applications due to their peculiar thermal and mechanical properties. In addition, their intrinsic coefficients of thermal expansion can be finely tuned through different mechanisms. Despite the great influence of extrinsic point defects on physical properties, only a few reports have dealt with their relationship to thermal expansion and thermal conductivity. Extrinsic oxygen vacancies in orthorhombic Al2W3O12, in different concentrations, were formed through heat treatments in argon or hydrogen atmospheres. X-ray powder diffraction, diffuse reflectance spectroscopy, and Raman and electron paramagnetic resonance spectroscopies were used to study the as-formed vacancies, and X-ray photoelectron spectroscopy was employed to propose a charge compensation mechanism. It was found that the intrinsic coefficient of thermal expansion of orthorhombic Al2W3O12 was severely affected by extrinsic oxygen vacancies. Thermal expansion was decreased up to 40% (from 25 to 400 °C) with respect to the extrinsic-point-defect-free counterpart. Unit-cell volumes of defective orthorhombic Al2W3O12 were larger, while their W-O bonds were weaker, likely leading to higher lattice flexibility and enhanced low-energy transverse acoustic modes. Extrinsic oxygen vacancies could be an additional mechanism for fine-tuning the intrinsic coefficients of thermal expansion in A2M3O12-type ceramics and in other framework structures built through two or threefold linkages.

4.
Nanotechnology ; 31(20): 205705, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31995520

RESUMO

The fabrication of complex nanoscale electronics with reduced dimensions poses challenges on novel techniques to accurately determine fundamental electronic parameters. In this article, we present a universal contactless method based on Raman scattering for measuring the mobility and hole concentration independently in GaAs:Zn and Mn ion-implanted GaAs:Zn nanowires, potentially of great interest for spintronics applications. Clear coupled longitudinal optical phonon-plasmon modes were recorded and fitted with a dielectric function, based on the Drude model, which includes contributions from both plasmons and phonons. From the fitting, we extract accurate values of the plasma frequency and plasma damping constant from which we directly calculate the hole density and mobility, respectively. The extracted mobilities were also used as input data for analysis of complementary four-probe transport measurements, where the corresponding hole concentrations could be calculated and found to be in good agreement with those extracted directly from the Raman data. We also investigated the influence of annealing of the GaAs:Zn nanowires on the hole concentration and mobility and found strong indications of thermally activated defects related to a formed crystalline As/oxide shell around the nanowires. The method proposed here is extremely powerful for the characterization of nanoelectronics in general, and nanospintronics in particular for which Hall measurements are difficult to pursue due to problems related to contact formation, as well as to inherent magnetic properties of the devices.

5.
Nanotechnology ; 30(33): 335202, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31018190

RESUMO

Recent progress in the realization of magnetic GaAs nanowires (NWs) doped with Mn has attracted a lot of attention due to their potential application in spintronics. In this work, we present a detailed Raman investigation of the structural properties of Zn doped GaAs (GaAs:Zn) and Mn-implanted GaAs:Zn (Ga0.96Mn0.04As:Zn) NWs. A significant broadening and redshift of the optical TO and LO phonon modes are observed for these NWs compared to as-grown undoped wires, which is attributed to strain induced by the Zn/Mn doping and to the presence of implantation-related defects. Moreover, the LO phonon modes are strongly damped, which is interpreted in terms of a strong LO phonon-plasmon coupling, induced by the free hole concentration. Moreover, we report on two new interesting Raman phonon modes (191 and 252 cm-1) observed in Mn ion-implanted NWs, which we attribute to Eg (TO) and A1g (LO) vibrational modes in a sheet layer of crystalline arsenic present on the surface of the NWs. This conclusion is supported by fitting the observed Raman shifts for the SO phonon modes to a theoretical dispersion function for a GaAs NW capped with a dielectric shell.

6.
Phys Chem Chem Phys ; 21(8): 4200-4208, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30741281

RESUMO

We report the high-pressure properties of two heterometallic perovskite-type metal-organic frameworks (MOFs) templated by dimethylammonium (NH2(CH3)2, DMA+) with the general formula [DMA]MI0.5CrIII0.5(HCOO)3, where MI = Na+ (DMANaCr) and K+ (DMAKCr). The high-pressure Raman scattering studies show crystal instabilities in the 4.0-4.4 GPa and 2.0-2.5 GPa ranges for DMANaCr and DMAKCr, respectively. The mechanism is similar in the two compounds and involves strong deformation of the metal-formate framework, especially pronounced for the subnetwork of CrO6 octahedra, accompanied by substantial compressibility of the DMA+ cations. Comparison with previous high-pressure Raman studies of sodium-chromium heterometallic MOFs show that the stability depends on the templated cation and increases as follows: ammonium < imidazolium < DMA+. Density functional theory (DFT) calculations are performed to get a better understanding of the structural properties leading to the existence of phase transitions. We calculate the energy of the hydrogen bonds (HBs) between the DMA+ cation and the metal formate cage, revealing a stronger interaction in the DMAKCr compound due to a HB arrangement that primarily involves the energetically preferred bonding to KO6 octahedra. This material however also has a smaller structural tolerance factor (TF) and a higher vibrational entropy than DMANaCr. This indicates a more flexible crystal structure, explaining the lower phase transition pressure, as well as the previously observed phase transition at 190 K, which is absent in the DMANaCr compound. The DFT high-pressure simulations show the largest contraction to be along the trigonal axis, leading to a minimal distortion of the HBs formed between the DMA+ cations and the metal-formate sublattice.

7.
Phys Chem Chem Phys ; 20(34): 22284-22295, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30123897

RESUMO

We report the synthesis, crystal structure, vibrational and luminescence properties of two heterometallic perovskite-type metal-organic frameworks (MOFs) containing the ammonium cation (NH4+, Am+): [NH4][Na0.5Cr0.5(HCOO)3] (AmNaCr) and [NH4][Na0.5Al0.475Cr0.025(HCOO)3] (AmNaAlCr) in comparison to the previously reported [NH4][Na0.5Al0.5(HCOO)3] (AmNaAl). The room-temperature crystal structure of AmNaCr and AmNaAlCr was determined to be R3[combining macron]. The hydrogen bonding (HB) energy calculated using density functional theory (DFT) agrees well with experimental data, and confirms the existence of almost identical H-bonding in AmNaCr and AmNaAl, with three short hydrogen bonds and a longer trifurcated H-bond. Temperature-dependent Raman measurements supported by differential scanning calorimetry show that AmNaCr does not undergo any structural phase transitions in the 80-400 K temperature range. The high-pressure Raman spectra of AmNaCr show the onset of two structural instabilities near 0.5 and 1.5 GPa. The first instability involves weak distortion of the framework, while the second leads to irreversible amorphization of the sample. High-pressure DFT simulations show that the unit cell of the AmNaCr compound contracts along the c axis, which leads to a shortening of the trifurcated H-bond. The optical properties show that both studied crystals exhibit Cr3+-based emission characteristic of intermediate ligand field strength.

8.
Phys Chem Chem Phys ; 18(46): 31653-31663, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27840876

RESUMO

We report the synthesis, crystal structure, and thermal, Raman, infrared and magnetic properties of [NH2NH3][M(HCOO)3] (HyM) compounds (M = Mn, Zn, Fe). Our results show that synthesis from methanol solution leads to perovskite polymorphs while that from 1-methyl-2-pyrrolidinone or its mixture with methanol allows obtaining chiral polymorphs. Perovskite HyFe, chiral HyFe and chiral HyMn undergo phase transitions at 347, 336 and 296 K, respectively, with symmetry changes from Pnma to Pna21, P63 to P212121 and P63 to P21. X-ray diffraction and Raman studies show that the phase transitions are governed by dynamics of the hydrazinium ions. Low-temperature magnetic studies show that these compounds exhibit magnetic ordering below 9-12.5 K. Since the low-temperature structures of chiral HyMn and perovskite HyFe are polar, these compounds are possible multiferroic materials. We also report high-pressure Raman scattering studies of chiral and perovskite HyZn, which show much larger stiffness of the latter phase. These studies also show that the ambient pressure polar phases are stable up to at least 1.4 and 4.1 GPa for the chiral and perovskite phase, respectively. Between 1.4 and 2.0 GPa (for chiral HyZn) and 4.1 and 5.2 GPa (for perovskite HyZn) pressure-induced transitions are observed associated with changes in the zinc-formate framework. Strong broadening of Raman bands and the decrease in their number for the high-pressure phase of chiral HyZn suggest that this phase is disordered and has higher symmetry than the ambient pressure one.

9.
Phys Chem Chem Phys ; 18(20): 13993-4000, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27150209

RESUMO

We report the synthesis and characterisation of a magnesium formate framework templated by protonated imidazole. Single-crystal X-ray diffraction data showed that this compound crystallizes in the monoclinic structure in the P21/n space group with lattice parameters a = 12.1246(4) Å, b = 12.2087(5) Å, c = 12.4991(4) Å and ß = 91.39(1)°. The antiparallel arrangement of the dipole moments associated with imidazolium cations suggests the antiferroelectric character of the room-temperature phase. The studied compound undergoes a structural phase transition at 451 K associated with a halving of the c lattice parameter and the disappearance of the antiferroelectric order. The monoclinic symmetry is preserved and the new metrics are a = 12.261(7) Å, b = 12.290(4) Å, c = 6.280(4) Å, and ß = 90.62(5)°. Raman and IR data are consistent with the X-ray diffraction data. They also indicate that the disorder of imidazolium cations plays a significant role in the mechanism of the phase transition. Dielectric data show that the phase transition is associated with a relaxor nature of electric ordering. We also report high-pressure Raman scattering studies of this compound that revealed the presence of two pressure-induced phase transitions near 3 and 7 GPa. The first transition is most likely associated with a rearrangement of the imidazolium cations without any significant distortion of these cations and the magnesium formate framework, whereas the second transition leads to strong distortion of both the framework and imidazolium cations. High-pressure data also show that imidazolium magnesium formate does not show any signs of amorphization up to 11.4 GPa.

10.
Phys Chem Chem Phys ; 18(39): 27613-27622, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27711614

RESUMO

We report temperature-dependent electric, IR and Raman studies of niccolite-type formate frameworks templated by protonated 1,4-diaminobutane. Our results show that the zinc-analogue exhibits a first-order phase transition close to 240 K. Single-crystal dielectric data show a much stronger anomaly at the phase transition for ε' along the a-direction compared to the c-direction. They also reveal that dipole relaxation exists in bnZn. Pronounced temperature-dependence observed for bending and torsion modes of the NH3+ groups proves that ordering of protonated amine plays a major role in the phase transition mechanism. The ordering is associated with distortion of the zinc formate framework but the number of observed vibrational modes is much smaller than expected assuming 36-fold multiplication of the unit cell below TC. It is also much smaller than reported for the Mn-analogue, which exhibits only a two-fold increase of the unit cell below TC. We discuss the origin of this behavior. Our results also show that the Co-analogue exhibits a similar phase transition to its Zn-counterpart. However, the observed narrowing and splitting of the corresponding bands is significantly smaller, suggesting weaker distortion of the framework and the presence of some disorder for this compound even at 5 K. The Raman and IR spectra of the Fe-analogue show weak narrowing of bands upon cooling, indicative of statistical freezing of the protonated amine at low temperatures. We also report high-pressure Raman scattering studies of the zinc-analogue. This study revealed a pressure-induced reversible phase transition between 3.4 and 4.1 GPa. Large shifts and splitting of modes corresponding to the vibrations of HCOO- ions associated with weak changes of the protonated amine prove that the major contribution to the phase transition mechanism comes from distortion of the zinc formate framework.

11.
Inorg Chem ; 53(23): 12650-7, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25398085

RESUMO

Temperature- and pressure-dependent studies of Raman and IR spectra have been performed on azetidinium zinc formate, [(CH2)3NH2][Zn(HCOO)3]. Vibrational spectra showed distinct anomalies in mode frequencies and bandwidths near 250 and 300 K, which were attributed to structural phase transitions associated with the gradual freezing of ring-puckering motions of the azetidinium cation. Pressure-dependent studies revealed a pressure-induced transition near 0.4 GPa. Raman spectra indicate that the structure of the room-temperature intermediate phase observed near 0.4 GPa is the same as the monoclinic structure observed at ambient pressure below 250 K. The second phase transition was found near 2.4 GPa. This transition has strong first-order character and is associated with strong distortion of both the zinc formate framework and azetidinium cations. The last phase transition was found near 7.0 GPa. This transition leads to lowering of the symmetry and further distortion of the zinc formate framework, whereas the azetidinium cation structure is weakly affected.

12.
Inorg Chem ; 53(18): 9615-24, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25147972

RESUMO

Vibrational properties and the temperature-induced phase transition mechanism have been studied in [NH4][Zn(HCOO)3] and [ND4][Zn(DCOO)3] metal organic frameworks by variable-temperature dielectric, IR, and Raman measurements. DFT calculations allowed proposing the detailed assignment of vibrational modes to respective motions of atoms in the unit cell. Temperature-dependent studies reveal a very weak isotopic effect on the phase transition temperature and confirm that ordering of ammonium cations plays a major role in the mechanism of the phase transition. We also present high-pressure Raman scattering studies on [ND4][Zn(DCOO)3]. The results indicate the rigidity of the formate ions and strong compressibility of the ZnO6 octahedra. They also reveal the onset of a pressure-induced phase transition at about 1.1 GPa. This transition has strong first-order character, and it is associated with a large distortion of the metal formate framework. Our data indicate the presence of at least two nonequivalent formate ions in the high-pressure structure with very different C-D bonds. The decompression experiment shows that the transition is reversible.

13.
Dalton Trans ; 53(16): 6906-6919, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38563080

RESUMO

This study revisits a (001)-oriented layered lead chloride templated by 1,2,4-triazolium, Tz2PbCl4, which recently has been an object of intense research but still suffers from gaps in characterization. Indeed, the divergent reports on the crystal structures of Tz2PbCl4 at various temperatures, devoid of independent verification of chiral phases through second harmonic generation (SHG), have led to an unresolved debate regarding the existence of a low-temperature phase transition (PT) and the noncentrosymmetric nature of the low-temperature phase. Now, by combining differential scanning calorimetry, single-crystal X-ray diffraction, dielectric, as well as linear and nonlinear optical spectroscopies on Tz2PbCl4, we reveal a sequence of reversible PTs at T1 = 361 K (phase I-II), T2 = 339 K (phase II-III), and T3 = 280 K (phase III-IV). No SHG activity could be registered for any of the four crystal phases, as checked by wide-temperature range SHG screening, supporting their centrosymmetry. The dipole relaxation processes indicate a decrease in activation energy with increasing temperature, from 0.60, 0.38, to 0.24 eV observed for phase IV (space group P21/c), phase III (Pnma), and phase II (Cmcm), respectively. This change is interpreted as a result of the diminishing strength of H-bonds as the system transforms from phase IV to III and subsequently to II. The weaker H-bonds facilitate the reorientation of Tz+ cations in the presence of an external electric field. The photoluminescence spectra of Tz2PbCl4 reveal an intriguing interplay of narrow and broadband emission, linked respectively to free excitons and excitons trapped on defects. Notably, as the temperature decreases from 300 K to 16 K, both the emission bands exhibit distinctive blue and red shifts, indicative of increased in-plane octahedral distortion. This dynamic behaviour transforms the photoluminescence of Tz2PbCl4 from greenish-blue at 300 K to yellowish-green at 13 K, enriching our understanding of 2D lead halide perovskites and highlighting the optoelectronic potential of Tz2PbCl4.

14.
J Phys Chem C Nanomater Interfaces ; 124(11): 6337-6348, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32952769

RESUMO

We report the high-pressure behavior of two perovskite-like metal formate frameworks with the ethylammonium cation (EtAKCr and EtANaAl) and compare them to previously reported data for EtANaCr. High-pressure single-crystal X-ray diffraction and Raman data for EtAKCr show the occurrence of two high-pressure phase transitions observed at 0.75(16) and 2.4(2) GPa. The first phase transition involves strong compression and distortion of the KO6 subnetwork followed by rearrangement of the -CH2CH3 groups from the ethylammonium cations, while the second involves octahedral tilting to further reduce pore volume, accompanied by further configurational changes of the alkyl chains. Both transitions retain the ambient P21/n symmetry. We also correlate and discuss the influence of structural properties (distortion parameters, bulk modulus, tolerance factors, and compressibility) and parameters calculated by using density functional theory (vibrational entropy, site-projected phonon density of states, and hydrogen bonding energy) on the occurrence and properties of structural phase transitions observed in this class of metal formates.

15.
Dalton Trans ; 48(25): 9072-9078, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31135000

RESUMO

We report complementary high-pressure Raman and single-crystal X-ray diffraction studies of a perovskite-like dicyanamide framework of [(C3H7)4N][Mn(N(CN)2)3] ([TPrA][Mn(dca)3]). Our studies show that the bulk modulus of the ambient pressure P4[combining macron]21c phase is B0 = 8.1(11) GPa, and the ab-plane compresses by 54.4(15) × 10-3 GPa-1 and the c-axis by 8.0(12) × 10-3 GPa-1, indicating the low stiffness of the framework and its highly anisotropic nature. [TPrA][Mn(dca)3] transforms near 0.4 GPa into the Pbcn phase. The driving forces for this symmetry change are partial ordering of the dicyanamide (dca) linkers, off-center shifts of TPrA+ cations and large changes in the columnar shifts of the MnN6 octahedra within the ab-plane. Upon further increase of pressure, [TPrA][Mn(dca)3] undergoes symmetry-lowering transitions into a monoclinic phase (space group P21/n) near 3 GPa and a triclinic phase near 5 GPa. The observed structural changes are, however, very subtle.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 223: 117298, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31254751

RESUMO

In this paper we present a Raman spectroscopy study of Na3MCO3PO4 (M=Mn, Fe, Co e Ni) carbonophosphates. The insertion of different metals with distinct ionic radii in the MO6 octahedra leads to changes in unit cell volume, thus leading to blueshifts in the energies of the Raman active modes. The experimental data are supported by lattice dynamic calculations and the vibrational properties of the carbonophosphates Na3MCO3PO4 are properly described.

17.
Dalton Trans ; 48(1): 242-252, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30516206

RESUMO

We report the synthesis, crystal structure, phonons and luminescence properties of three novel heterometallic metal organic frameworks (MOFs) with perovskite-like topology of the following formulas: [C3H5N2]Na0.5Cr0.5(HCOO)3 (ImNaCr), [C3H5N2]Na0.5Al0.5(HCOO)3 (ImNaAl) and [C3H5N2]Na0.5Al0.475Cr0.025(HCOO)3 (ImNaAlCr with 5 mol% of Cr3+). ImNaCr crystallizes in a monoclinic system (P2/n space group) with one imidazolium cation (Im+) in an asymmetric unit forming six N-HO and four C-HO hydrogen bonds. In contrast to other known heterometallic MOFs, the complete substitution of Cr3+ ions with smaller Al3+ ions leads to a change of the crystal symmetry. ImNaAl adopts a monoclinic P21/n space group with two distinct Im+ cations and different H-bonding patterns. The DSC measurements and XRD single-crystal studies show that the studied crystals do not undergo structural phase transitions in the 80-400 K range. The high-pressure Raman studies of ImNaCr reveal the presence of two reversible structural instabilities, first in the 0.4-1.1 GPa range and second near 4 GPa. The first pressure-induced phase transition involves weak distortion of the metal-formate framework, while the second one is associated with partial and reversible amorphization of the sample. We discuss the stability of heterometallic formate MOFs depending on their building blocks. The luminescence measurements show that both the fully concentrated crystal (ImNaCr) and the diluted one (ImNaAlCr) exhibit a Cr3+-based emission characteristic of intermediate ligand field strength. We also show that the spectroscopic properties of heterometallic MOFs depend strongly on the templated cation, i.e. the decreasing size of the organic cation leads to an increase in the crystal field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA