RESUMO
Germ layer formation is among the earliest differentiation events in metazoan embryos. In triploblasts, three germ layers are formed, among which the endoderm gives rise to the epithelial lining of the gut tube and associated organs including the liver, pancreas and lungs. In frogs (Xenopus), where early germ layer formation has been studied extensively, the process of endoderm specification involves the interplay of dozens of transcription factors. Here, we review the interactions between these factors, summarized in a transcriptional gene regulatory network (GRN). We highlight regulatory connections conserved between frog, fish, mouse, and human endodermal lineages. Especially prominent is the conserved role and regulatory targets of the Nodal signaling pathway and the T-box transcription factors, Vegt and Eomes. Additionally, we highlight network topologies and motifs, and speculate on their possible roles in development.
Assuntos
Endoderma/embriologia , Redes Reguladoras de Genes/genética , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/genética , Xenopus/genética , Animais , Diferenciação CelularRESUMO
Gene regulatory networks (GRNs) involve highly combinatorial interactions between transcription factors and short sequence motifs in cis-regulatory modules of target genes to control cellular phenotypes. The GRNs specifying most cell types are largely unknown and are the subject of wide interest. A catalog of transcription factors is a valuable tool toward obtaining a deeper understanding of the role of these critical effectors in any biological setting. Here we present a comprehensive catalog of the transcription factors for the diploid frog Xenopus tropicalis. We identify 1235 genes encoding DNA-binding transcription factors, comparable to the numbers found in typical mammalian species. In detail, the repertoire of X. tropicalis transcription factor genes is nearly identical to human and mouse, with the exception of zinc finger family members, and a small number of species/lineage-specific gene duplications and losses relative to the mammalian repertoires. We applied this resource to the identification of transcription factors differentially expressed in the early gastrula stage embryo. We find transcription factor enrichment in Spemann's organizer, the ventral mesoderm, ectoderm and endoderm, and report 218 TFs that show regionalized expression patterns at this stage. Many of these have not been previously reported as expressed in the early embryo, suggesting thus far unappreciated roles for many transcription factors in the GRNs regulating early development. We expect our transcription factor catalog will facilitate myriad studies using Xenopus as a model system to understand basic biology and human disease.
Assuntos
Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/biossíntese , Proteínas de Xenopus/biossíntese , Xenopus/metabolismo , Animais , Sequência de Bases , Embrião não Mamífero/metabolismo , Humanos , Camundongos , Especificidade da Espécie , Fatores de Transcrição/genética , Xenopus/embriologia , Xenopus/genética , Proteínas de Xenopus/genéticaRESUMO
Advances in RNA sequencing technologies have led to the surprising discovery that a vast number of transcripts emanate from regions of the genome that are not part of coding genes. Although some of the smaller ncRNAs such as microRNAs have well-characterized functions, the majority of long ncRNA (lncRNA) functions remain poorly understood. Understanding the significance of lncRNAs is an important challenge facing biology today. A powerful approach to uncovering the function of lncRNAs is to explore temporal and spatial expression profiling. This may be particularly useful for classes of lncRNAs that have developmentally important roles as the expression of such lncRNAs will be expected to be both spatially and temporally regulated during development. Here, we take advantage of our ultra-high frequency (temporal) sampling of Xenopus embryos to analyze gene expression trajectories of lncRNA transcripts over the first 3 days of development. We computationally identify 5689 potential single- and multi-exon lncRNAs. These lncRNAs demonstrate clear dynamic expression patterns. A subset of them displays highly correlative temporal expression profiles with respect to those of the neighboring genes. We also identified spatially localized lncRNAs in the gastrula stage embryo. These results suggest that lncRNAs have regulatory roles during early embryonic development.
Assuntos
RNA Longo não Codificante/genética , Xenopus/genética , Animais , Embrião não Mamífero/metabolismo , Éxons/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Modelos Genéticos , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/isolamento & purificação , Transcriptoma , Xenopus/embriologiaRESUMO
Mesendodermal specification is one of the earliest events in embryogenesis, where cells first acquire distinct identities. Cell differentiation is a highly regulated process that involves the function of numerous transcription factors (TFs) and signaling molecules, which can be described with gene regulatory networks (GRNs). Cell differentiation GRNs are difficult to build because existing mechanistic methods are low throughput, and high-throughput methods tend to be non-mechanistic. Additionally, integrating highly dimensional data composed of more than two data types is challenging. Here, we use linked self-organizing maps to combine chromatin immunoprecipitation sequencing (ChIP-seq)/ATAC-seq with temporal, spatial, and perturbation RNA sequencing (RNA-seq) data from Xenopus tropicalis mesendoderm development to build a high-resolution genome scale mechanistic GRN. We recover both known and previously unsuspected TF-DNA/TF-TF interactions validated through reporter assays. Our analysis provides insights into transcriptional regulation of early cell fate decisions and provides a general approach to building GRNs using highly dimensional multi-omic datasets.
Assuntos
Endoderma/embriologia , Redes Reguladoras de Genes , Genômica , Mesoderma/embriologia , Xenopus/embriologia , Xenopus/genética , Animais , Cromatina/metabolismo , Sequência Consenso/genética , DNA/metabolismo , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Ligação Proteica , RNA/metabolismo , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
For decades, the early development of the Xenopus embryo has been an essential model system to study the gene regulatory mechanisms that govern cellular specification. At the top of the hierarchy of gene regulatory networks, maternally deposited transcription factors initiate this process and regulate the expression of zygotic genes that give rise to three distinctive germ layer cell types (ectoderm, mesoderm, and endoderm), and subsequent generation of organ precursors. The onset of germ layer specification is also closely coupled with changes associated with chromatin modifications. This review will examine the timing of maternal transcription factors initiating the zygotic genome activation, the epigenetic landscape of embryonic chromatin, and the network structure that governs the process.
Assuntos
Cromatina/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Herança Materna/genética , Fatores de Transcrição/genética , Proteínas de Xenopus/genética , Xenopus/genética , Animais , Cromatina/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Fatores de Transcrição/metabolismo , Xenopus/classificação , Xenopus/embriologia , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genéticaRESUMO
Although Wnt/ß-catenin signaling is generally conserved and well understood, the regulatory mechanisms controlling context-specific direct Wnt target gene expression in development and disease are still unclear. The onset of zygotic gene transcription in early embryogenesis represents an ideal, accessible experimental system to investigate context-specific direct Wnt target gene regulation. We combine transcriptomics using RNA-seq with genome-wide ß-catenin association using ChIP-seq to identify stage-specific direct Wnt target genes. We propose coherent feedforward regulation involving two distinct classes of direct maternal Wnt target genes, which differ both in expression and persistence of ß-catenin association. We discover that genomic ß-catenin association overlaps with Foxh1-associated regulatory sequences and demonstrate that direct maternal Wnt target gene expression requires Foxh1 function and Nodal/Tgfß signaling. Our results support a new paradigm for direct Wnt target gene co-regulation with context-specific mechanisms that will inform future studies of embryonic development and more widely stem cell-mediated homeostasis and human disease.
RESUMO
Lineage specification is governed by gene regulatory networks (GRNs) that integrate the activity of signaling effectors and transcription factors (TFs) on enhancers. Sox17 is a key transcriptional regulator of definitive endoderm development, and yet, its genomic targets remain largely uncharacterized. Here, using genomic approaches and epistasis experiments, we define the Sox17-governed endoderm GRN in Xenopus gastrulae. We show that Sox17 functionally interacts with the canonical Wnt pathway to specify and pattern the endoderm while repressing alternative mesectoderm fates. Sox17 and ß-catenin co-occupy hundreds of key enhancers. In some cases, Sox17 and ß-catenin synergistically activate transcription apparently independent of Tcfs, whereas on other enhancers, Sox17 represses ß-catenin/Tcf-mediated transcription to spatially restrict gene expression domains. Our findings establish Sox17 as a tissue-specific modifier of Wnt responses and point to a novel paradigm where genomic specificity of Wnt/ß-catenin transcription is determined through functional interactions between lineage-specific Sox TFs and ß-catenin/Tcf transcriptional complexes. Given the ubiquitous nature of Sox TFs and Wnt signaling, this mechanism has important implications across a diverse range of developmental and disease contexts.
Assuntos
Endoderma/metabolismo , Redes Reguladoras de Genes/genética , Fatores de Transcrição SOXF/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Animais , Gástrula/metabolismo , Fatores de Transcrição SOXF/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Xenopus , beta Catenina/genéticaRESUMO
It has recently been reported that a common side effect of translation-blocking morpholino antisense oligonucleotides is the induction of a set of innate immune response genes in Xenopus embryos and that splicing-blocking morpholinos lead to unexpected off-target mis-splicing events. Here, we present an analysis of all publicly available Xenopus RNA sequencing (RNA-seq) data in a reexamination of the effects of translation-blocking morpholinos on the innate immune response. Our analysis does not support the authors' general conclusion, which was based on a limited number of RNA-seq datasets. Moreover, the strong induction of an immune response appears to be specific to the tbxt/tbxt2 morpholinos. The more comprehensive study presented here indicates that using morpholinos for targeted gene knockdowns remains of considerable value for the rapid identification of gene function.
Assuntos
Imunidade Inata/imunologia , Morfolinos/imunologia , Morfolinos/metabolismo , Animais , Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Imunidade Inata/fisiologia , Oligonucleotídeos Antissenso/genética , Splicing de RNA , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Transcriptoma/genética , Xenopus/embriologia , Xenopus/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genéticaRESUMO
Elucidation of the sequence of events underlying the dynamic interaction between transcription factors and chromatin states is essential. Maternal transcription factors function at the top of the regulatory hierarchy to specify the primary germ layers at the onset of zygotic genome activation (ZGA). We focus on the formation of endoderm progenitor cells and examine the interactions between maternal transcription factors and chromatin state changes underlying the cell specification process. Endoderm-specific factors Otx1 and Vegt together with Foxh1 orchestrate endoderm formation by coordinated binding to select regulatory regions. These interactions occur before the deposition of enhancer histone marks around the regulatory regions, and these TFs recruit RNA polymerase II, regulate enhancer activity, and establish super-enhancers associated with important endodermal genes. Therefore, maternal transcription factors Otx1, Vegt, and Foxh1 combinatorially regulate the activity of super-enhancers, which in turn activate key lineage-specifying genes during ZGA.
Assuntos
Fatores de Transcrição Forkhead/metabolismo , Genoma , Fatores de Transcrição Otx/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas de Xenopus/metabolismo , Zigoto/metabolismo , Animais , Sítios de Ligação , Cromatina/metabolismo , Endoderma/metabolismo , Elementos Facilitadores Genéticos , Feminino , Fatores de Transcrição Forkhead/genética , Histonas/genética , Histonas/metabolismo , Masculino , Morfolinos/metabolismo , Fatores de Transcrição Otx/antagonistas & inibidores , Fatores de Transcrição Otx/genética , RNA Polimerase II/metabolismo , Proteínas com Domínio T/genética , Transcriptoma , Xenopus/metabolismo , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/genéticaRESUMO
The interplay between transcription factors and chromatin dictates gene regulatory network activity. Germ layer specification is tightly coupled with zygotic gene activation and, in most metazoans, is dependent upon maternal factors. We explore the dynamic genome-wide interactions of Foxh1, a maternal transcription factor that mediates Nodal/TGF-ß signaling, with cis-regulatory modules (CRMs) during mesendodermal specification. Foxh1 marks CRMs during cleavage stages and recruits the co-repressor Tle/Groucho in the early blastula. We highlight a population of CRMs that are continuously occupied by Foxh1 and show that they are marked by H3K4me1, Ep300, and Fox/Sox/Smad motifs, suggesting interplay between these factors in gene regulation. We also propose a molecular "hand-off" between maternal Foxh1 and zygotic Foxa at these CRMs to maintain enhancer activation. Our findings suggest that Foxh1 functions at the top of a hierarchy of interactions by marking developmental genes for activation, beginning with the onset of zygotic gene expression.