Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 8(20): 3073-103, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-22961930

RESUMO

Photocatalytic approaches, that is the reaction of light-produced charge carriers at a semiconductor surface with their environment, currently attract an extremely wide scientific interest. This is to a large extent due to the high expectations: i) to convert sunlight directly into an energy carrier (H(2)), ii) to stimulate chemical synthetic reactions, or iii) to degrade unwanted environmental pollutants. Since the early reports in 1972, TiO(2) has been the most investigated photocatalytic material by far; this originates from its outstanding electronic properties that allow for a wide range of applications. Not only the material, but also its structure and morphology, can have a considerable influence on the photocatalytic performance of TiO(2). In recent years, particularly 1D (or pseudo 1D) structures such as nanowires and nanotubes have received great attention. The present Review focuses on TiO(2) nanotube arrays (and similar structures) that grow by self-organizing electrochemistry (highly aligned) from a Ti metal substrate. Herein, the growth, properties, and applications of these tubes are discussed, as well as ways and means to modify critical tube properties. Common strategies are addressed to improve the performance of photocatalysts such as doping or band-gap engineering, co-catalyst decoration, junction formation, or applying external bias. Finally, some unique applications of the ordered tube structures in various photocatalytic approaches are outlined.


Assuntos
Nanotubos/química , Fotoquímica/métodos , Titânio/química , Nanotecnologia
2.
Nat Mater ; 11(2): 162-6, 2011 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-22138790

RESUMO

Electrochemical oxidation of metals, in solutions where the oxide is somewhat soluble, produces anodic oxides with highly regular arrangements of pores. Although porous aluminium and titanium oxides have found extensive use in functional nanostructures, pore initiation and self-ordering are not yet understood. Here we present an analysis that examines the roles of oxide dissolution and ionic conduction in the morphological stability of anodic films. We show that patterns of pores with a minimum spacing are possible only within a narrow range of the oxide formation efficiency (the fraction of oxidized metal atoms retained in the film), which should exist when the metal ion charge exceeds two. Experimentally measured efficiencies, over diverse anodizing conditions on both aluminium and titanium, lie within the different ranges predicted for each metal. On the basis of these results, the relationship between dissolution chemistry and the conditions for pore initiation can now be understood in quantitative terms.

3.
Chemistry ; 18(38): 11862-6, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22890982

RESUMO

Recombination dynamics: For TiO(2) nanotube-based dye-sensitized solar cells, the efficiency can be drastically enhanced by a synergetic effect that occurs when using nanowire-ended nanotubes in combination with an adequate nanoparticle decoration (see figure).

4.
J Am Chem Soc ; 132(5): 1478-9, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20078123

RESUMO

We report a process for the fabrication of an anatase TiO(2) mesosponge (TMS) layer by an optimized Ti anodization process in a hot glycerol electrolyte followed by a suitable etching process. Such layers can easily be grown to >10 microm thickness and have regular channels and structural features in the 5-20 nm range. The layers show high photocatalytic activity and are mechanically very robust. The layers therefore open new pathways to the wide field of TiO(2)(anatase) applications.

5.
Chemphyschem ; 11(13): 2698-713, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20648515

RESUMO

TiO(2) is one of the most investigated compounds in contemporary materials science. Due to a set of virtually unique electronic properties, it finds intense use in photoelectrochemical applications such as photocatalysis or solar cells. The main drawback in view of direct exploitation of solar-light-based effects is its large band gap of >3 eV. Visible-light-activated TiO(2) can be prepared by doping (band-gap engineering) through incorporation or decoration with other metal ions, nonmetal ions, and semiconductors. Most recently, efforts in TiO(2) research have been even more intensified by the finding of self-organized nanotubular oxide architectures that can be prepared by a simple but optimized anodization of Ti metal surfaces. These nanotubular geometries provide large potential for enhanced and novel functional features. This Review examines doped TiO(2) and in particular TiO(2) nanotubes. Various types of dopants, doping methods, and applications of modified TiO(2) nanotubes are discussed.


Assuntos
Nanotubos/química , Titânio/química , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
6.
Nanotechnology ; 21(10): 105704, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20154369

RESUMO

Nanoporous WO(3) layers were grown by electrochemical anodization of W in a fluoride containing electrolyte. These layers were exposed to a thermal treatment in NH(3) to achieve nitrogen doping of the material. The morphology, crystal structure, composition and photoresponse of pure and nitrogen doped WO(3) were compared using scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and photoelectrochemical measurements. The results clearly show that successful nitrogen doping into WO(3) layers can be achieved by controlling the temperature and time during the NH(3) treatment. Most importantly, it is demonstrated that for the nitrogen doped WO(3) layers the photocurrent is significantly enhanced in the visible light region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA