RESUMO
Plasma turbulence is investigated using unprecedented high-resolution ion velocity distribution measurements by the Magnetospheric Multiscale mission (MMS) in the Earth's magnetosheath. This novel observation of a highly structured particle distribution suggests a cascadelike process in velocity space. Complex velocity space structure is investigated using a three-dimensional Hermite transform, revealing, for the first time in observational data, a power-law distribution of moments. In analogy to hydrodynamics, a Kolmogorov approach leads directly to a range of predictions for this phase-space transport. The scaling theory is found to be in agreement with observations. The combined use of state-of-the-art MMS data sets, novel implementation of a Hermite transform method, and scaling theory of the velocity cascade opens new pathways to the understanding of plasma turbulence and the crucial velocity space features that lead to dissipation in plasmas.
RESUMO
Reconnection and turbulence are two of the most commonly observed dynamical processes in plasmas, but their relationship is still not fully understood. Using 2.5D kinetic particle-in-cell simulations of both strong turbulence and reconnection, we compare the cross-scale transfer of energy in the two systems by analyzing the generalization of the von Kármán Howarth equations for Hall magnetohydrodynamics, a formulation that subsumes the third-order law for steady energy transfer rates. Even though the large scale features are quite different, the finding is that the decomposition of the energy transfer is structurally very similar in the two cases. In the reconnection case, the time evolution of the energy transfer also exhibits a correlation with the reconnection rate. These results provide explicit evidence that reconnection dynamics fundamentally involves turbulence-like energy transfer.
RESUMO
The description of the Moffatt and Parker problem recently revisited by O. Pezzi et al. [Astrophys. J. 834, 166 (2017)1538-435710.3847/1538-4357/834/2/166] is here extended by analyzing the features of the turbulence produced by the interaction of two colliding Alfvénic wave packets in a kinetic plasma. Although the approach based on the presence of linear modes features is still helpful in characterizing some low-energy fluctuations, other signatures, which go beyond the pure linear modes analysis, are recovered, such as the significant weakening of clear dispersion relations and the production of zero frequency fluctuations.
RESUMO
Analysis of the Vlasov-Maxwell equations from the perspective of turbulence cascade clarifies the role of electromagnetic work, and reveals the importance of the pressure-strain relation in generating internal energy. Particle-in-cell simulation demonstrates the relative importance of the several energy exchange terms, indicating that the traceless pressure-strain interaction "Pi-D" is of particular importance for both electrons and protons. The Pi-D interaction and the second tensor invariants of the strain are highly localized in similar spatial regions, indicating that energy transfer occurs preferentially in coherent structures. The collisionless turbulence cascade may be fruitfully explored by study of these energy transfer channels, in addition to examining transfer across spatial scales.