RESUMO
TNFRSF13B mutations are widely associated with common variable immunodeficiency. TNFRSF13B was recently counted among relevant genes associated with childhood-onset of hematological malignancies; nonetheless, its role in acute myeloid leukemia (AML) remains unexplored. We report the study of a family with two cases of AML, sharing a germline TNFRSF13B mutation favoring the formation of a more stable complex with its ligand TNFSF13: a positive regulator of AML-initiating cells. Our data turn the spotlight onto the TNFRSF13B role in AML onset, inserting a new fragment into the complex scenario of a hereditary predisposition to myeloid neoplasms.
Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Criança , Mutação , Predisposição Genética para Doença , Neoplasias Hematológicas/genética , Leucemia Mieloide Aguda/genética , Proteína Transmembrana Ativadora e Interagente do CAML/genéticaRESUMO
INTRODUCTION: Interferon regulatory factor 4 (IRF4) is a transcriptional factor with a key role in the modulation of inflammation and immune surveillance. The IRF4 gene is downregulated in Philadelphia-negative myeloproliferative neoplasms, and its expression is associated with prognosis and response to treatment. METHODS: We evaluated the IRF4 expression kinetics during tyrosine kinase inhibitor (TKI) treatment in a cohort of 116 chronic myeloid leukemia (CML) patients to elucidate its role in the disease course. RESULTS: A relationship between the IRF4 expression and the disease burden was observed at various disease stages. A correlation analysis between the International Scale (IS) and IRF4 values confirmed this close association. A significant increase is detected after 3 months of TKI treatment. Patients achieving an early molecular response (EMR) had higher IRF4 values at both diagnosis and after 3 months of therapy as compared to those failing the EMR target. Patients achieving treatment-free remission did not show IRF4 fluctuations during monitoring, while a decreased IRF4 expression emerged at the time of molecular relapse. CONCLUSION: Our data seem to confirm the relevance of IRF4 in the pathogenesis of CML, suggesting a pivotal role at the disease onset and a predictive value during the CML course.
Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Doença Crônica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Expressão GênicaRESUMO
One key process that controls leukemogenesis is the regulation of oncogenic gene expression by transcription factors acting as tumor suppressors. Understanding this intricate mechanism is crucial to elucidating leukemia pathophysiology and discovering new targeted treatments. In this review, we make a brief overview of the physiological role of IKAROS and the molecular pathway that contributes to acute leukemia pathogenesis through IKZF1 gene lesions. IKAROS is a zinc finger transcription factor of the Krüppel family that acts as the main character during hematopoiesis and leukemogenesis. It can activate or repress tumor suppressors or oncogenes, regulating the survival and proliferation of leukemic cells. More than 70% of Ph+ and Ph-like cases of acute lymphoblastic leukemia exhibit IKZF1 gene variants, which are linked to worse treatment outcomes in both childhood and adult B-cell precursor acute lymphoblastic leukemia. In the last few years, much evidence supporting IKAROS involvement in myeloid differentiation has been reported, suggesting that loss of IKZF1 might also be a determinant of oncogenesis in acute myeloid leukemia. Considering the complicated "social" network that IKAROS manages in hematopoietic cells, we aim to focus on its involvement and the numerous alterations of molecular pathways it can support in acute leukemias.
Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Criança , Fator de Transcrição Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transformação Celular Neoplásica , Resultado do TratamentoRESUMO
Nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) is the most widely investigated inflammasome member whose overactivation can be a driver of several carcinomas. It is activated in response to different signals and plays an important role in metabolic disorders and inflammatory and autoimmune diseases. NLRP3 belongs to the pattern recognition receptors (PRRs) family, expressed in numerous immune cells, and it plays its primary function in myeloid cells. NLRP3 has a crucial role in myeloproliferative neoplasms (MPNs), considered to be the diseases best studied in the inflammasome context. The investigation of the NLRP3 inflammasome complex is a new horizon to explore, and inhibiting IL-1ß or NLRP3 could be a helpful cancer-related therapeutic strategy to improve the existing protocols.
Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Mieloides/metabolismo , Interleucina-1beta/metabolismoRESUMO
Epitranscriptomics analyze the biochemical modifications borne by RNA and their downstream influence. From this point of view, epitranscriptomics represent a new layer for the control of genetic information and can affect a variety of molecular processes including the cell cycle and the differentiation. In physiological conditions, hematopoiesis is a tightly regulated process that produces differentiated blood cells starting from hematopoietic stem cells. Alteration of this process can occur at different levels in the pathway that leads from the genetic information to the phenotypic manifestation producing malignant hematopoiesis. This review focuses on the role of epitranscriptomic events that are known to be implicated in normal and malignant hematopoiesis, opening a new pathophysiological and therapeutic scenario. Moreover, an evolutionary vision of this mechanism will be provided.
Assuntos
Epigênese Genética , Neoplasias Hematológicas/metabolismo , Hematopoese , Transcriptoma , Adenosina Desaminase/genética , Animais , Epigenômica , Evolução Molecular , Humanos , Transferases Intramoleculares/genética , Mutação , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/genéticaRESUMO
Despite the approval of new drugs, the inclusion of -omics-derived data and the integration of machine learning in both the diagnostic and therapeutic process, the prognosis of acute myeloid leukemia (AML) remains dismal. The curative path is still aimed at achieving a successful allogeneic hematopoietic stem cell transplant (HSCT) in most patients. Nevertheless, access to this procedure is limited to eligible patients. Moreover, post-HSCT outcomes are influenced by AML heterogeneity and patient-related factors. The rise of venetoclax (VEN)-based combinations as standard of care in the treatment of older or unfit AML patients, together with their peculiar management profile, has led researchers to evaluate the feasibility of this approach in patients proceeding toward HSCT. We reviewed the available evidence to weigh up the advantages and pitfalls of this new therapeutic strategy.
RESUMO
Life expectation of chronic myeloid leukemia patients in the tyrosine kinase inhibitors era is almost equal to that of healthy subjects. On the other hand, their long-term management must take into account a higher risk of adverse events, at least partly related to the treatment. Various studies reported a higher incidence of cardiovascular events in these patients. Clonal hematopoiesis is broadly considered a major independent risk factor for cardiovascular events. Of note, the underlying physiopathological mechanisms connect clonal hematopoiesis with a global proinflammatory status, triggering a vicious circle in which the somatic mutations and inflammation feed each other. All this considered, we investigated the occurrence of clonal hematopoiesis in chronic myeloid leukemia patients developing a cardiovascular event under tyrosine kinase inhibitor therapy.
Assuntos
Doenças Cardiovasculares , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Humanos , Hematopoiese Clonal , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mieloide Aguda/terapia , Doenças Cardiovasculares/genética , Hematopoese/genética , MutaçãoRESUMO
Optical genome mapping (OGM) is a new genome-wide technology that can reveal both structural genomic variations (SVs) and copy number variations (CNVs) in a single assay. OGM was initially employed to perform genome assembly and genome research, but it is now more widely used to study chromosome aberrations in genetic disorders and in human cancer. One of the most useful OGM applications is in hematological malignancies, where chromosomal rearrangements are frequent and conventional cytogenetic analysis alone is insufficient, necessitating further confirmation using ancillary techniques such as fluorescence in situ hybridization, chromosomal microarrays, or multiple ligation-dependent probe amplification. The first studies tested OGM efficiency and sensitivity for SV and CNV detection, comparing heterogeneous groups of lymphoid and myeloid hematological sample data with those obtained using standard cytogenetic diagnostic tests. Most of the work based on this innovative technology was focused on myelodysplastic syndromes (MDSs), acute myeloid leukemia (AML), and acute lymphoblastic leukemia (ALL), whereas little attention was paid to chronic lymphocytic leukemia (CLL) or multiple myeloma (MM), and none was paid to lymphomas. The studies showed that OGM can now be considered as a highly reliable method, concordant with standard cytogenetic techniques but able to detect novel clinically significant SVs, thus allowing better patient classification, prognostic stratification, and therapeutic choices in hematological malignancies.
RESUMO
Standard cytogenetic techniques (chromosomal banding analysis-CBA, and fluorescence in situ hybridization-FISH) show limits in characterizing complex chromosomal rearrangements and structural variants arising from two or more chromosomal breaks. In this study, we applied optical genome mapping (OGM) to fully characterize two cases of complex chromosomal rearrangements at high resolution. In case 1, an acute myeloid leukemia (AML) patient showing chromothripsis, OGM analysis was fully concordant with classic cytogenetic techniques and helped to better refine chromosomal breakpoints. The OGM results of case 2, a patient with non-Hodgkin lymphoma, were only partially in agreement with previous cytogenetic analyses and helped to better define clonal heterogeneity, overcoming the bias related to clonal selection due to cell culture of cytogenetic techniques. In both cases, OGM analysis led to the identification of molecular markers, helping to define the pathogenesis, classification, and prognosis of the analyzed patients. Despite extensive efforts to study hematologic diseases, standard cytogenetic methods display unsurmountable limits, while OGM is a tool that has the power to overcome these limitations and provide a cytogenetic analysis at higher resolution. As OGM also shows limits in defining regions of a repetitive nature, combining OGM with CBA to obtain a complete cytogenetic characterization would be desirable.
Assuntos
Aberrações Cromossômicas , Humanos , Hibridização in Situ Fluorescente/métodos , Cariotipagem , Análise Citogenética/métodos , Mapeamento por RestriçãoRESUMO
DNMT3A gene mutations, detected in 20-25% of de novo acute myeloid leukemia (AML) patients, are typically heterozygous. Biallelic variants are uncommon, affecting ~3% of cases and identifying a worse prognosis. Indeed, two concomitant DNMT3A mutations were recently associated with shorter event-free survival and overall survival in AML. We present an AML case bearing an unusual DNMT3A molecular status, strongly affecting its function and strangely impacting the global genomic methylation profile. A 56-year-old Caucasian male with a diagnosis of AML not otherwise specified (NOS) presented a complex DNMT3A molecular profile consisting of four different somatic variants mapping on different alleles (in trans). 3D modelling analysis predicted the effect of the DNMT3A mutational status, showing that all the investigated mutations decreased or abolished DNMT3A activity. Although unexpected, DNMT3A's severe loss of function resulted in a global genomic hypermethylation in genes generally involved in cell differentiation. The mechanisms through which DNMT3A contributes to AML remain elusive. We present a unique AML case bearing multiple biallelic DNMT3A variants abolishing its activity and resulting in an unexpected global hypermethylation. The unusual DNMT3A behavior described requires a reflection on its role in AML development and persistence, highlighting the heterogeneity of its deregulation.
RESUMO
OBJECTIVES: BCR-ABL1 and JAK2 V617F coexistence in myeloproliferative neoplasms has been described as concomitant or sequential events. Despite this, we present a unique case of chronic myeloid leukemia (CML) not referable to either of the known scenarios. METHODS: BCR-ABL1 molecular monitoring was performed by real-time quantitative PCR (RQ-PCR). At the time of molecular relapse, a targeted next-generation sequencing analysis with a customized panel of 26 genes commonly mutated in myeloid diseases was performed. To investigate the kinetics of the JAK2 variant and its association with the BCR-ABL1 rearrangement, RQ-PCR was performed at different time points during the patient's follow-up. RESULTS: While negative at CML diagnosis, the JAK2 mutation was first detected 9 years later (VAF: 7.2%). The mutational burden of JAK2 remained stable in multiple determinations, with minor fluctuations independent of BCR-ABL1 kinetics. At the last available time point, the patient was in deep molecular response (MR4), the JAK2 mutational burden was 7%, and no clinical-laboratory findings of Ph-MPN were detectable. DISCUSSION: In the presented case, the JAK2variantoccurring during the course of the disease seems to stay in the shadows of CML, just as a bystander. The impact of this event (that may be considered suggestive of clonal hematopoiesis of indeterminate potential) on the disease outcome, even if seemingly irrelevant, has still to be explored.
Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Transtornos Mieloproliferativos , Proteínas de Fusão bcr-abl/genética , Humanos , Janus Quinase 2/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Erythrocytosis is a clinical condition characterized by increased red cell mass, hemoglobin, and hematocrit values. A significant fraction of patients is described as having idiopathic erythrocytosis. We have previously demonstrated an association between erythrocytosis and the JAK2 GGCC_46/1 haplotype and CALR rs1049481_G allele. In the present study, we investigated genomic and clinical features of 80 erythrocytosis patients with the aim to provide useful information in clinical practice. Patients with idiopathic erythrocytosis could have a genomic germline background, eventually associated with somatic variants. Through association analysis, we show that male patients presenting with idiopathic erythrocytosis, and normal EPO levels could be the best candidates for the search for the JAK2 GGCC_46/1 haplotype and CALR rs1049481_G allele. Further studies are needed to confirm these findings and to depict detailed genomic and phenotypical characteristics of these patients.
RESUMO
Inflammatory bowel diseases (IBDs) are a group of chronic conditions of the gastrointestinal tract in which nationwide studies have revealed a higher risk of hematological malignancies (HMs). Clonal hematopoiesis (CH) is a premalignant condition defined by the presence of an acquired somatic mutation characterized by a variant allele frequency (VAF) of ≥2%, in a gene frequently associated with HMs. A growing body of evidence suggests a correlation between inflammation and CH; its occurrence in the context of IBD has been previously demonstrated. With the aim to assess CH possible co-occurrence in patients with an IBD associated with HMs, we performed a targeted next-generation sequencing analysis in a cohort of thirteen patients who were referred to our center with IBD associated with HMs. Eleven (85%) patients showed one or more mutations in CH-associated genes; DNMT3A was the most frequently mutated gene, followed by ASXL1 and JAK2. These results may suggest that the mechanisms at the basis of the inflammatory environment could potentially select for the growth of hematopoietic clones harboring specific mutations. In this context, CH emergence may be boosted by the proinflammatory IBD environment, thus acting as a biological link between IBD and the HM onset. If these data are confirmed, IBD patients screened and positive for CH should undergo a hematologic follow-up to assess the risk of developing HM. Future study will clarify the relationship between these conditions.
RESUMO
Interferon regulatory factor 4 (IRF4) is involved in the pathogenesis of various hematologic malignancies. Its expression has been related to the negative regulation of myeloid-derived suppressor cells (MDSCs) and the polarization of anti-inflammatory M2 macrophages, thereby altering immunosurveillance and inflammatory mechanisms. An abnormal inflammatory status in the bone marrow microenvironment of myeloproliferative neoplasms (MPNs) has recently been demonstrated; moreover, in chronic myeloid leukemia a downregulated expression of IRF4 has been found. In this context, we evaluated the IRF4 expression in 119 newly diagnosed consecutive Philadelphia negative MPNs (Ph- MPNs), showing a low expression among the MPNs phenotypes with a more significant decrease in primary myelofibrosis patients. Lower IRF4 levels were associated with JAK2 + and triple negatives cases carrying the worst prognosis. Furthermore, the IRF4 levels were related to leukemic transformation and a shorter leukemia-free survival; moreover, the risk of myelofibrosis transformation in polycythemia vera and essential thrombocythemia patients was more frequent in cases with lower IRF4 levels. Overall, our study demonstrates an IRF4 dysregulated expression in MPNs patients and its association with a worse prognosis. Further studies could validate these data, to improve our knowledge of the MPNs pathogenesis and confirm the IRF4 role as a new prognostic factor.
RESUMO
The evaluation of the somatic hypermutation of the clonotypic immunoglobulin heavy variable gene has become essential in the therapeutic management in chronic lymphocytic leukemia patients. European Research Initiative on Chronic Lymphocytic Leukemia promotes good practices and standardized approaches to this assay but often they are labor-intensive, technically complex, with limited in scalability. The use of next-generation sequencing in this analysis has been widely tested, showing comparable accuracy and distinct advantages. However, the adoption of the next generation sequencing requires a high sample number (run batching) to be economically convenient, which could lead to a longer turnaround time. Here we present data from nanopore sequencing for the somatic hypermutation evaluation compared to the standard method. Our results show that nanopore sequencing is suitable for immunoglobulin heavy variable gene mutational analysis in terms of sensitivity, accuracy, simplicity of analysis and is less time-consuming. Moreover, our work showed that the development of an appropriate data analysis pipeline could lower the nanopore sequencing error rate attitude.
Assuntos
Genes de Imunoglobulinas , Imunoglobulinas/genética , Leucemia Linfocítica Crônica de Células B/genética , Sequenciamento por Nanoporos , Análise Mutacional de DNA , Humanos , Região Variável de Imunoglobulina/genéticaRESUMO
Acute promyelocytic leukemia (APL) patients carry in 27% of cases an activating mutation of the fms-like tyrosine kinase-3 (FLT3) gene: internal tandem duplication (ITD) or tyrosine kinase domain (TKD) point mutation. The simultaneous presence of both types of mutations, so-called FLT3 dual mutations, has been reported in 2% of APL, but this circumstance has never been studied. We studied a cohort of 74 APL cases, performing an in-depth analysis of three FLT3 dual mutant cases. Nanopore sequencing (NS) allowed us to characterize their complex mutational profile, showing the occurrence of multiple activating FLT3 mutations on different alleles in the leukemic promyelocytes and suggesting a cumulative impact of these events on the constitutive activation of the FLT3 pathway in APL cells. NS approach not only sheds light on the FLT3 mutational complexity in APL, but may also be useful to better clarify the FLT3 mutations landscape in acute myeloid leukemia.
Assuntos
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Sequenciamento por Nanoporos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/genética , Mutação , Tirosina Quinase 3 Semelhante a fms/genéticaRESUMO
Myeloid neoplasms with eosinophilia and abnormalities of the PDGFRA gene can benefit from therapy with tyrosine kinase inhibitors, therefore revealing the PDGFRA rearrangement is essential to ensure the best choice of treatment. The most common PDGFRA partner is the FIP1L1 gene, generating the oncoprotein FIP1L1/PDGFRA (F/P). In the majority of cases the F/P fusion gene originates from intrachromosomal rearrangement at band 4q12, and occasionally from chromosomal translocations. In both cases, the interstitial chromosomal deletion of a region involving the CHIC2 gene has been reported, which is cryptic by conventional karyotyping but detectable by Fluorescence In Situ Hybridization (FISH) analyses. Herein, we report an acute myeloid leukemia (AML) case presenting with eosinophilia; the F/P fusion gene originated from a new, cryptic and complex intrachromosomal rearrangement of 4q12. Classical FISH assay revealed abnormal hybridization signals, but the presence of the F/P chimaeric gene was demonstrated by molecular analysis. We performed molecular characterization of the chromosomal rearrangement and targeted Next-Generation Sequencing (NGS) analysis with a myeloid gene panel, revealing the presence of pathogenic genomic variants affecting the TET2 and ETV6 genes. These mutations were present as subclones at the disease onset and their clone size increased at relapse.
Assuntos
Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Rearranjo Gênico/genética , Humanos , Cariótipo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , RecidivaRESUMO
Acute myeloid leukemia (AML) clinical settings cannot do without molecular testing to confirm or rule out predictive biomarkers for prognostic stratification, in order to initiate or withhold targeted therapy. Next generation sequencing offers the advantage of the simultaneous investigation of numerous genes, but these methods remain expensive and time consuming. In this context, we present a nanopore-based assay for rapid (24 h) sequencing of six genes (NPM1, FLT3, CEBPA, TP53, IDH1 and IDH2) that are recurrently mutated in AML. The study included 22 AML patients at diagnosis; all data were compared with the results of S5 sequencing, and discordant variants were validated by Sanger sequencing. Nanopore approach showed substantial advantages in terms of speed and low cost. Furthermore, the ability to generate long reads allows a more accurate detection of longer FLT3 internal tandem duplications and phasing double CEBPA mutations. In conclusion, we propose a cheap, rapid workflow that can potentially enable all basic molecular biology laboratories to perform detailed targeted gene sequencing analysis in AML patients, in order to define their prognosis and the appropriate treatment.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucemia Mieloide Aguda/genética , Adulto , Alelos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Feminino , Humanos , Isocitrato Desidrogenase/genética , Masculino , Mutação , Nanoporos , Proteínas Nucleares/genética , Nucleofosmina , Prognóstico , Análise de Sequência de DNA/métodos , Proteína Supressora de Tumor p53/genética , Tirosina Quinase 3 Semelhante a fms/genéticaRESUMO
BACKGROUND: Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been associated with tumor aggressiveness, and also previously discussed in hematological malignancies, by applying different approaches. Moreover, today different techniques designed to measure global DNA methylation are focused on the methylation level of specific repeat elements. In this work we propose a new method of investigating Alu differential methylation, based on droplet digital PCR (ddPCR) technology. METHODS: Forty-six patients with hematological neoplasms were included in the study: 30 patients affected by chronic lymphocytic leukemia, 7 patients with myelodysplastic syndromes at intermediate/high risk, according with the International Prognostic Scoring System, and 9 patients with myelomonocytic leukemia. Ten healthy donors were included as controls. Acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with decitabine (DEC) hypomethylating agent, was also analyzed. DNA samples were investigated for Alu methylation level by digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation, followed by ddPCR. RESULTS: Using ddPCR, a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, was observed. Moreover, comparing the global Alu methylation levels at diagnosis and after azacytidine (AZA) treatment in MDS patients, a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis was evident. We also observed a significant decrease of the Alu methylation level in CLL patients compared to HD, and, finally, for CMML patients, a decrease of Alu sequences methylation was observed in patients harboring the SRSF2 hotspot gene mutation c.284C>D. CONCLUSIONS: In our work, we propose a method to investigate Alu differential methylation based on ddPCR technology. This assay introduces ddPCR as a more sensitive and immediate technique for Alu methylation analysis. To date, this is the first application of ddPCR to study DNA repetitive elements. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose.