Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 31(37): 10208-14, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26322650

RESUMO

The development of new surface functionalization methods that are easy to use, versatile, and allow local deposition represents a real scientific challenge. Overcoming this challenge, we present here a one-pot process that consists in self-assembling, by electrochemistry on an electrode, films made of oppositely charged macromolecules. This method relies on a charge-shifting polyanion, dimethylmaleic-modified poly(allylamine) (PAHd), that undergoes hydrolysis at acidic pH, leading to an overall switching of its charge. When a mixture of the two polyanions, PAHd and poly(styrenesulfonate) (PSS), is placed in contact with an electrode, where the pH is decreased locally by electrochemistry, the transformation of PAHd into a polycation (PAH) leads to the continuous self-assembly of a nanometric PAH/PSS film by electrostatic interactions. The pH decrease is obtained by the electrochemical oxidation of hydroquinone, which produces protons locally over nanometric distances. Using a negatively charged enzyme, alkaline phosphatase (AP), instead of PSS, this one-pot process allows the creation of enzymatically active films. Under mild conditions, self-assembled PAH/AP films have an enzymatic activity which is adjustable simply by controlling the self-assembly time. The selective functionalization of microelectrode arrays by PAH/AP was achieved, opening the route toward miniaturized biosensors.


Assuntos
Eletroquímica/métodos , Alilamina/química , Técnicas Biossensoriais/métodos , Catálise , Eletrodos , Poliaminas/química , Polieletrólitos , Polímeros/química , Poliestirenos/química
2.
Chemphyschem ; 15(16): 3572-9, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25139263

RESUMO

Succinate: quinone reductases (SQRs) are the enzymes that couple the oxidation of succinate and the reduction of quinones in the respiratory chain of prokaryotes and eukaryotes. Herein, we compare the temperature-dependent activity and structural stability of two SQRs, the first from the mesophilic bacterium Escherichia coli and the second from the thermophilic bacterium Thermus thermophilus, using a combined electrochemical and infrared spectroscopy approach. Direct electron transfer was achieved with full membrane protein complexes at single-walled carbon nanotube (SWNT)-modified electrodes. The possible structural factors that contribute to the temperature-dependent activity of the enzymes and, in particular, to the thermostability of the Thermus thermophilus SQR are discussed.


Assuntos
Complexo II de Transporte de Elétrons/química , Nanotubos de Carbono/química , Catálise , Técnicas Eletroquímicas , Eletrodos , Complexo II de Transporte de Elétrons/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Escherichia coli/enzimologia , Estabilidade Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Thermus thermophilus/enzimologia
3.
Nanoscale ; 15(28): 12095-12104, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37424328

RESUMO

Because the combination of chiral and magnetic properties is becoming more and more attractive for magneto-chiral phenomena, we here aim at exploring the induction of chirality to achiral magnetic molecules as a strategy for the preparation of magneto-chiral objects. To this end, we have associated free base- and metallo-porphyrins with silica nano helices, using a variety of elaboration methods, and have studied them mainly by electronic natural circular dichroism (NCD) and magnetic circular dichroism (MCD) spectroscopies. While electrostatic or covalent surface grafting uniformly yielded very low induced CD (ICD) for the four assayed porphyrins, a moderate response was observed when the porphyrins were incorporated into the interior of the double-walled helices, likely due to the association of the molecules with the chirally-organized gemini surfactant. A generally stronger, but more variable, ICD was observed when the molecules were drop casted onto the helices immobilised on a quartz plate, likely due to the different capacities of the porphyrins to aggregate into chiral assemblies. Electronic spectroscopy, electron microscopy and IR spectroscopy were used to interpret the patterns of aggregation and their influence on ICD and MCD. No enhancement of MCD was observed as a result of association with the nanohelices except in the case of the free base, 5,10,15,20-tetra-(4-sulfonatophenyl)porphyrin (TPPS). This nanocomposite demonstrated a large ICD in the Soret region and a large MCD in the Q-region due to J-aggregation. However, no induced MChD was observed, possibly due to the spectral mismatch between the ICD and MCD peaks.

4.
Chem Commun (Camb) ; 52(25): 4691-3, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26952989

RESUMO

Commercially available polyurethane open cell foams are readily coated with mussel-inspired polydopamine. The polydopamine film allows robust immobilisation of TiO2 nanoparticles at the surface of the three-dimensional material. The resulting catalyst is efficient for the photo-degradation of an azo dye, reusable and highly resistant to mechanical stress. A novel type of robust structured catalytic support, easily accessible via an inexpensive and green process, is thus described.

5.
Anal Chim Acta ; 649(2): 236-45, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19699400

RESUMO

An original electrochemical sensor based on molecularly imprinted conducting polymer (MICP) is developed, which enables the recognition of a small pesticide target molecule, atrazine. The conjugated MICP, poly(3,4-ethylenedioxythiophene-co-thiophene-acetic acid), has been electrochemically synthesized onto a platinum electrode following two steps: (i) polymerization of comonomers in the presence of atrazine, already associated to the acetic acid substituent through hydrogen bonding, and (ii) removal of atrazine from the resulting polymer, which leaves the acetic acid substituents open for association with atrazine. The obtained sensing MICP is highly specific towards newly added atrazine and the recognition can be quantitatively analyzed by the variation of the cyclic voltammogram of MICP. The developed sensor shows remarkable properties: selectivity towards triazinic family, large range of detection (10(-9) mol L(-1) to 1.5 x 10(-2) mol L(-1) in atrazine) and low detection threshold (10(-7) mol L(-1)).


Assuntos
Atrazina/análise , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Praguicidas/análise , Polímeros/química , Eletrodos , Platina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA