Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Planta ; 259(5): 96, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517516

RESUMO

MAIN CONCLUSION: OsRR26 is a cytokinin-responsive response regulator that promotes phytohormone-mediated ROS accumulation in rice roots, regulates seedling growth, spikelet fertility, awn development, represses NADPH oxidases, and negatively affects salinity tolerance. Plant two-component systems (TCS) play a pivotal role in phytohormone signaling, stress responses, and circadian rhythm. However, a significant knowledge gap exists regarding TCS in rice. In this study, we utilized a functional genomics approach to elucidate the role of OsRR26, a type-B response regulator in rice. Our results demonstrate that OsRR26 is responsive to cytokinin, ABA, and salinity stress, serving as the ortholog of Arabidopsis ARR11. OsRR26 primarily localizes to the nucleus and plays a crucial role in seedling growth, spikelet fertility, and the suppression of awn development. Exogenous application of cytokinin led to distinct patterns of reactive oxygen species (ROS) accumulation in the roots of both WT and transgenic plants (OsRR26OE and OsRR26KD), indicating the potential involvement of OsRR26 in cytokinin-mediated ROS signaling in roots. The application of exogenous ABA resulted in varied cellular compartmentalization of ROS between the WT and transgenic lines. Stress tolerance assays of these plants revealed that OsRR26 functions as a negative regulator of salinity stress tolerance across different developmental stages in rice. Physiological and biochemical analyses unveiled that the knockdown of OsRR26 enhances salinity tolerance, characterized by improved chlorophyll retention and the accumulation of soluble sugars, K+ content, and amino acids, particularly proline.


Assuntos
Arabidopsis , Oryza , Oryza/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Tolerância ao Sal/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Plantas Geneticamente Modificadas/metabolismo , Citocininas/metabolismo , Plântula/genética , Plântula/metabolismo , Arabidopsis/genética , Salinidade , Regulação da Expressão Gênica de Plantas
2.
Planta ; 259(4): 81, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438662

RESUMO

MAIN CONCLUSION: Overexpression of OsDJ-1C in rice improves root architecture, photosynthesis, yield and abiotic stress tolerance through modulating methylglyoxal levels, antioxidant defense, and redox homeostasis. Exposure to abiotic stresses leads to elevated methylglyoxal (MG) levels in plants, impacting seed germination and root growth. In response, the activation of NADPH-dependent aldo-keto reductase and glutathione (GSH)-dependent glyoxalase enzymes helps to regulate MG levels and reduce its toxic effects. However, detoxification may not be carried out effectively due to the limitation of GSH and NADPH in plants under stress. Recently, a novel enzyme called glyoxalase III (GLY III) has been discovered which can detoxify MG in a single step without needing GSH. To understand the physiological importance of this pathway in rice, we overexpressed the gene encoding GLYIII enzyme (OsDJ-1C) in rice. It was observed that OsDJ-1C overexpression in rice regulated MG levels under stress conditions thus, linked well with plants' abiotic stress tolerance potential. The OsDJ-1C overexpression lines displayed better root architecture, improved photosynthesis, and reduced yield penalty compared to the WT plants under salinity, and drought stress conditions. These plants demonstrated an improved GSH/GSSG ratio, reduced level of reactive oxygen species, increased antioxidant capacity, and higher anti-glycation activity thereby indicating that the GLYIII mediated MG detoxification plays a significant role in plants' ability to reduce the impact of abiotic stress. Furthermore, these findings imply the potential of OsDJ-1C in crop improvement programs.


Assuntos
Aldeído Oxirredutases , Oryza , Oryza/genética , Antioxidantes , NADP , Aldeído Pirúvico , Glutationa , Estresse Fisiológico
3.
Plant Cell Environ ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073079

RESUMO

The Cystathionine-ß-Synthase (CBS) domain-containing proteins (CDCPs) constitute a functionally diverse protein superfamily, sharing an evolutionary conserved CBS domain either in pair or quad. Rice genome (Oryza sativa subsp. indica) encodes 42 CDCPs; their functions remain largely unexplored. This study examines OsCBSCBS4, a quadruple CBS domain containing protein towards its role in regulating the abiotic stress tolerance in rice. Gene expression analyses revealed upregulation of OsCBSCBS4 in response to diverse abiotic stresses. Further, the cytoplasm-localised OsCBSCBS4 showed interaction with two different kinases, a cytoplasmic localised cGMP-dependant protein kinase (OsPKG) and the nucleo-cytoplasmic catalytic subunit of sucrose-nonfermentation 1-related protein kinase 1 (OsSnRK1A). The interaction with the latter assisted in trafficking of OsCBSCBS4 to the nucleus as well. Overexpression of OsCBSCBS4 in rice resulted in enhanced tolerance to drought and salinity stress, via maintaining better physiological parameters and antioxidant activity. Additionally, OsCBSCBS4-overexpressing rice plants exhibited reduced yield penalty under stress conditions. The in silico docking and in vitro binding analyses of OsCBSCBS4 with ATP suggest its involvement in cellular energy balance. Overall, this study provides novel insight into the unexplored functions of OsCBSCBS4 and demonstrates it as a new promising target for augmenting crop resilience.

4.
J Exp Bot ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847578

RESUMO

The rhizosphere contains both essential nutrients and potentially harmful substances for plant growth. Plants, as sessile organisms, must efficiently absorb the necessary nutrients while actively avoiding the uptake of toxic compounds. Metalloids, which are elements that exhibit properties of both metals and nonmetals, can have different effects on plant growth, ranging from being essential and beneficial to being toxic. The toxicity of metalloids in plants arises due to either the dosage of exposure or the specific elemental type. To utilize or detoxify these elements, plants have developed various transporters that regulate their uptake and distribution in plants. Arguably, genomic sequence analysis suggests the presence of such transporter families throughout the plant kingdom, from chlorophytes to higher plants. These transporters form defined families with related transport preferences. The isoforms within these families have evolved with specialized functions regulated by defined selectivity. Hence, understanding transporters' chemistry to atomic detail is important to achieve desired genetic modifications for crop improvement. Here, we outline various adaptations in plant transport systems to deal with metalloids, including their uptake, distribution, detoxification, and homeostasis in plant tissues. Structural parallels are drawn to other nutrient transporter systems to support emerging themes of functional diversity of active sites of transporters, elucidating adaptations of plants to utilize and extrude metalloid concentrations. Considering the observed physiological importance of metalloids, this review intends to highlight the shared and disparate features in metalloid transport systems and their corresponding nutrient transporters.

5.
J Exp Bot ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557811

RESUMO

Hypoxia occurs when the oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally-induced hypoxia poses significant challenges for metabolically-active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide and reactive nitrogen species (RNS), such as nitric oxide (•NO), nitrogen dioxide (•NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots and hyponastic response. NO and hydrogen peroxide (H2O2) participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the GABA shunt and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge, highlighting the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.

6.
Arch Microbiol ; 206(7): 308, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896139

RESUMO

Prion-like proteins (PrLPs) have emerged as beneficial molecules with implications in adaptive responses. These proteins possess a conserved prion-like domain (PrLD) which is an intrinsically disordered region capable of adopting different conformations upon perceiving external stimuli. Owing to changes in protein conformation, functional characteristics of proteins harboring PrLDs get altered thereby, providing a unique mode of protein-based regulation. Since PrLPs are ubiquitous in nature and involved in diverse functions, through this study, we aim to explore the role of such domains in yet another important physiological process viz. plant-microbe interactions to get insights into the mechanisms dictating cross-kingdom interactions. We have evaluated the presence and functions of PrLPs in 18 different plant-associated fungi of agricultural importance to unravel their role in plant-microbe interactions. Of the 241,997 proteins scanned, 3,820 (~ 1.6%) were identified as putative PrLPs with pathogenic fungi showing significantly higher PrLP density than their beneficial counterparts. Further, through GO enrichment analysis, we could predict several PrLPs from pathogenic fungi to be involved in virulence and formation of stress granules. Notably, PrLPs involved in (retro)transposition were observed exclusively in pathogenic fungi. We even analyzed publicly available data for the expression alterations of fungal PrLPs upon their interaction with their respective hosts which revealed perturbation in the levels of some PrLP-encoding genes during interactions with plants. Overall, our work sheds light into the probable role of prion-like candidates in plant-fungi interaction, particularly in context of pathogenesis, paving way for more focused studies for validating their role.


Assuntos
Proteínas Fúngicas , Fungos , Plantas , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Plantas/microbiologia , Fungos/genética , Fungos/metabolismo , Fungos/patogenicidade , Simulação por Computador , Doenças das Plantas/microbiologia , Proteínas Priônicas/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/química , Príons/metabolismo , Príons/genética , Príons/química , Virulência , Interações Hospedeiro-Patógeno
7.
Physiol Plant ; 176(3): e14361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801017

RESUMO

Nepenthes are carnivorous plants that colonize habitats poor in soil nutrients. To survive, Nepenthes develop pitchers capable of capturing and digesting attracted prey. Prey-derived nutrients are then absorbed to support plant growth and reproduction. So far, pitcher formation in Nepenthes is a poorly understood biological process. To shed light on the formation of Nepenthes pitchers, we grew dissected shoot apices of 3-month-old N. khasiana seedlings in Murashige and Skoog (MS) medium of varying strengths viz. full-strength MS (1 MS), quarter-strength MS (1/4 MS), and one-eighth strength MS (1/8 MS), including those lacking nitrogen (N), phosphorus (P), and potassium (K) and in the presence of N-1-naphthylphthalamic acid (NPA). We sequenced the transcriptome and performed gas chromatography-mass spectrometry to determine changes in gene expression patterns and primary metabolite accumulations in response to the varying nutrient conditions. Shoots grown in 1 MS or NPA-containing 1/4 MS and 1/8 MS failed to develop pitchers. Remarkably, pitcher formation is restored when N was removed from 1 MS. Transcriptomic response to nutrient-sufficient and nutrient-deficient conditions are associated with the enrichment of several defence-related genes, including two JA-mediated defence response genes, WRKY51 and WRKY11, respectively. Further, metabolomic response to the varying nutrient conditions identifies glutamic acid as a key metabolite, accumulating at lower and higher levels in shoots with and without pitchers, respectively. Together, our findings suggest that failure to form pitchers may be associated with the suppression of the JA-signalling pathway, whereas the induction of the JA-mediated defence response is linked to pitcher formation in N. khasiana.


Assuntos
Transcriptoma , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Metabolômica , Nutrientes/metabolismo , Fósforo/metabolismo , Metaboloma
8.
Physiol Plant ; 176(1): e14209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348703

RESUMO

Abiotic stresses such as heat, drought and submergence are major threats to global food security. Despite simultaneous or sequential occurrence of these stresses being recurrent under field conditions, crop response to such stress combinations is poorly understood. Rice is a staple food crop for the majority of human beings. Exploitation of existing genetic diversity in rice for combined and/or sequential stress is a useful approach for developing climate-resilient cultivars. We phenotyped ~400 rice accessions under high temperature, drought, or submergence and their combinations. A cumulative performance index revealed Lomello as the best performer across stress and stress combinations at the seedling stage. Lomello showed a remarkable ability to maintain a higher quantum yield of photosystem (PS) II photochemistry. Moreover, the structural integrity of the photosystems, electron flow through both PSI and PSII and the ability to protect photosystems against photoinhibition were identified as the key traits of Lomello across the stress environments. A higher membrane stability and an increased amount of leaf chlorophyll under stress may be due to an efficient management of reactive oxygen species (ROS) at the cellular level. Further, an efficient electron flow through the photosystems and, thus, a higher photosynthetic rate in Lomello is expected to act as a sink for ROS by reducing the rate of electron transport to the high amount of molecular oxygen present in the chloroplast. However, further studies are needed to identify the molecular mechanism(s) involved in the stability of photosynthetic machinery and stress management in Lomello during stress conditions.


Assuntos
Oryza , Humanos , Oryza/fisiologia , Espécies Reativas de Oxigênio , Fotossíntese/fisiologia , Clorofila , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo
9.
Plant Physiol ; 188(1): 285-300, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34643728

RESUMO

Increasing night-time temperatures are a major threat to sustaining global rice (Oryza sativa L.) production. A simultaneous increase in [CO2] will lead to an inevitable interaction between elevated [CO2] (e[CO2]) and high night temperature (HNT) under current and future climates. Here, we conducted field experiments to identify [CO2] responsiveness from a diverse indica panel comprising 194 genotypes under different planting geometries in 2016. Twenty-three different genotypes were tested under different planting geometries and e[CO2] using a free-air [CO2] enrichment facility in 2017. The most promising genotypes and positive and negative controls were tested under HNT and e[CO2] + HNT in 2018. [CO2] responsiveness, measured as a composite response index on different yield components, grain yield, and photosynthesis, revealed a strong relationship (R2 = 0.71) between low planting density and e[CO2]. The most promising genotypes revealed significantly lower (P < 0.001) impact of HNT in high [CO2] responsive (HCR) genotypes compared to the least [CO2] responsive genotype. [CO2] responsiveness was the major driver determining grain yield and related components in HCR genotypes with a negligible yield loss under HNT. A systematic investigation highlighted that active selection and breeding for [CO2] responsiveness can lead to maintained carbon balance and compensate for HNT-induced yield losses in rice and potentially other C3 crops under current and future warmer climates.


Assuntos
Dióxido de Carbono/efeitos adversos , Dióxido de Carbono/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/genética , Temperatura Alta/efeitos adversos , Oryza/crescimento & desenvolvimento , Oryza/genética , Oryza/metabolismo , Produtos Agrícolas/metabolismo , Variação Genética , Genótipo , Índia
10.
Int Microbiol ; 26(4): 973-987, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37036547

RESUMO

Drought is the most important factor limiting the activity of rhizobia during N-fixation and plant growth. In the present study, we isolated Bradyrhizobium spp. from root nodules of higher trehalose-accumulating soybean genotypes and examined for moisture stress tolerance on a gradient of polyethylene glycol (PEG 6000) amended in yeast extract mannitol (YEM) broth. In addition, the bradyrhizobial strains were also evaluated for symbiotic effectiveness on soybean. Based on 16S rDNA gene sequences, four bradyrhizobial species were recovered from high trehalose-accumulating genotypes, i.e., two Bradyrhizobium liaoningense strains (accession number KX230053, KX230054) from EC 538828 and PK-472, respectively, one Bradyrhizobium daqingense (accession number KX230052) from PK-472, and one Bradyrhizobium kavangense (accession number MN197775) from Valder genotype having low trehalose. These strains, along with two native strains, viz., Bradyrhizobium japonicum (JF792425), Bradyrhizobium liaoningense (JF792426), and one commercial rhizobium, were studied for nodulation, leghaemoglobin, and N-fixation abilities on soybean under sterilized sand microcosm conditions in a completely randomized design. Among all the strains, D-4A (B. daqingense) followed by D-4B (B. liaoningense) was found to have significantly higher nodulation traits and acetylene reduction assay (ARA) activity when compared to other strains and commercial rhizobia. The bradyrhizobia isolates showed plant growth promotion traits such as indole acetic acid (IAA), exopolysaccharide (EPS), and siderophore production, phosphate-solubilizing potential, and proline accumulation. The novel species B. daqingense was reported for the first time from Indian soil and observed to be a potential candidate strain and should be evaluated for conferring drought tolerance in soybean under simulated stress conditions.


Assuntos
Bradyrhizobium , Rhizobium , Glycine max/microbiologia , Bradyrhizobium/genética , Trealose , Genótipo , Rhizobium/genética , Simbiose , Filogenia
11.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835601

RESUMO

The flavin monooxygenase (FMO) enzyme was discovered in mammalian liver cells that convert a carcinogenic compound, N-N'-dimethylaniline, into a non-carcinogenic compound, N-oxide. Since then, many FMOs have been reported in animal systems for their primary role in the detoxification of xenobiotic compounds. In plants, this family has diverged to perform varied functions like pathogen defense, auxin biosynthesis, and S-oxygenation of compounds. Only a few members of this family, primarily those involved in auxin biosynthesis, have been functionally characterized in plant species. Thus, the present study aims to identify all the members of the FMO family in 10 different wild and cultivated Oryza species. Genome-wide analysis of the FMO family in different Oryza species reveals that each species has multiple FMO members in its genome and that this family is conserved throughout evolution. Taking clues from its role in pathogen defense and its possible function in ROS scavenging, we have also assessed the involvement of this family in abiotic stresses. A detailed in silico expression analysis of the FMO family in Oryza sativa subsp. japonica revealed that only a subset of genes responds to different abiotic stresses. This is supported by the experimental validation of a few selected genes using qRT-PCR in stress-sensitive Oryza sativa subsp. indica and stress-sensitive wild rice Oryza nivara. The identification and comprehensive in silico analysis of FMO genes from different Oryza species carried out in this study will serve as the foundation for further structural and functional studies of FMO genes in rice as well as other crop types.


Assuntos
Oryza , Oryza/genética , Oxigenases de Função Mista/genética , Genoma de Planta , Genômica , Ácidos Indolacéticos/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas
12.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36982973

RESUMO

Lactate/malate dehydrogenases (Ldh/Maldh) are ubiquitous enzymes involved in the central metabolic pathway of plants and animals. The role of malate dehydrogenases in the plant system is very well documented. However, the role of its homolog L-lactate dehydrogenases still remains elusive. Though its occurrence is experimentally proven in a few plant species, not much is known about its role in rice. Therefore, a comprehensive genome-wide in silico investigation was carried out to identify all Ldh genes in model plants, rice and Arabidopsis, which revealed Ldh to be a multigene family encoding multiple proteins. Publicly available data suggest its role in a wide range of abiotic stresses such as anoxia, salinity, heat, submergence, cold and heavy metal stress, as also confirmed by our qRT-PCR analysis, especially in salinity and heavy metal mediated stresses. A detailed protein modelling and docking analysis using Schrodinger Suite reveals the presence of three putatively functional L-lactate dehydrogenases in rice, namely OsLdh3, OsLdh7 and OsLdh9. The analysis also highlights the important role of Ser-219, Gly-220 and His-251 in the active site geometry of OsLdh3, OsLdh7 and OsLdh9, respectively. In fact, these three genes have also been found to be highly upregulated under salinity, hypoxia and heavy metal mediated stresses in rice.


Assuntos
Arabidopsis , Metais Pesados , Oryza , Animais , L-Lactato Desidrogenase/metabolismo , Oryza/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Malatos , Lactato Desidrogenases/metabolismo , Evolução Molecular , Metais Pesados/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Filogenia
13.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37511436

RESUMO

Pokkali is a strong representation of how stress-tolerant genotypes have evolved due to natural selection pressure. Numerous omics-based investigations have indicated different categories of stress-related genes and proteins, possibly contributing to salinity tolerance in this wild rice. However, a comprehensive study towards understanding the role of long-noncoding RNAs (lncRNAs) in the salinity response of Pokkali has not been done to date. We have identified salt-responsive lncRNAs from contrasting rice genotypes IR64 and Pokkali. A total of 63 and 81 salinity-responsive lncRNAs were differentially expressed in IR64 and Pokkali, respectively. Molecular characterization of lncRNAs and lncRNA-miRNA-mRNA interaction networks helps to explore the role of lncRNAs in the stress response. Functional annotation revealed that identified lncRNAs modulate various cellular processes, including transcriptional regulation, ion homeostasis, and secondary metabolite production. Additionally, lncRNAs were predicted to bind stress-responsive transcription factors, namely ERF, DOF, and WRKY. In addition to salinity, expression profiling was also performed under other abiotic stresses and phytohormone treatments. A positive modulation in TCONS_00035411, TCONS_00059828, and TCONS_00096512 under both abiotic stress and phytohormone treatments could be considered as being of potential interest for the further functional characterization of IncRNA. Thus, extensive analysis of lncRNAs under various treatments helps to delineate stress tolerance mechanisms and possible cross-talk.


Assuntos
Oryza , RNA Longo não Codificante , RNA Longo não Codificante/genética , Oryza/genética , Reguladores de Crescimento de Plantas , Fenótipo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
14.
Environ Microbiol ; 24(6): 2817-2836, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34435423

RESUMO

Plant growth promotion by microbes is a cumulative phenomenon involving multiple traits, many of which are not explored yet. Hence, to unravel microbial mechanisms underlying growth promotion, we have analysed the genomes of two potential growth-promoting microbes, viz., Pseudomonas sp. CK-NBRI-02 (P2) and Bacillus marisflavi CK-NBRI-03 (P3) for the presence of plant-beneficial traits. Besides known traits, we found that microbes differ in their ability to metabolize methylglyoxal (MG), a ubiquitous cytotoxin regarded as general consequence of stress in plants. P2 exhibited greater tolerance to MG and possessed better ability to sustain plant growth under dicarbonyl stress. However, under salinity, only P3 showed a dose-dependent induction in MG detoxification activity in accordance with concomitant increase in MG levels, contributing to enhanced salt tolerance. Furthermore, salt-stressed transcriptomes of both the strains showed differences with respect to MG, ion and osmolyte homeostasis, with P3 being more responsive to stress. Importantly, application of either strain altered MG levels and subsequently MG detoxification machinery in Arabidopsis, probably to strengthen plant defence response and growth. We therefore, suggest a crucial role of microbial MG resistance in plant growth promotion and that it should be considered as a beneficial trait while screening microbes for stress mitigation in plants.


Assuntos
Arabidopsis , Aldeído Pirúvico , Arabidopsis/genética , Plantas , Estresse Salino , Tolerância ao Sal , Estresse Fisiológico/fisiologia
15.
Physiol Plant ; 174(3): e13693, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35483971

RESUMO

Methylglyoxal (MG) is a metabolically generated highly cytotoxic compound that accumulates in all living organisms, from Escherichia coli to humans, under stress conditions. To detoxify MG, nature has evolved reduced glutathione (GSH)-dependent glyoxalase and NADPH-dependent aldo-keto reductase systems. But both GSH and NADPH have been reported to be limiting in plants under stress conditions, and thus detoxification might not be performed efficiently. Recently, glyoxalase III (GLY III)-like enzyme activity has been reported from various species, which can detoxify MG without any cofactor. In the present study, we have tested whether an E. coli gene, hchA, encoding a functional GLY III, could provide abiotic stress tolerance to living systems. Overexpression of this gene showed improved tolerance in E. coli and Saccharomyces cerevisiae cells against salinity, dicarbonyl, and oxidative stresses. Ectopic expression of the E. coli GLY III gene (EcGLY-III) in transgenic tobacco plants confers tolerance against salinity at both seedling and reproductive stages as indicated by their height, weight, membrane stability index, and total yield potential. Transgenic plants showed significantly increased glyoxalase and antioxidant enzyme activity that resisted the accumulation of excess MG and reactive oxygen species (ROS) during stress. Moreover, transgenic plants showed more anti-glycation activity to inhibit the formation of advanced glycation end product (AGE) that might prevent transgenic plants from stress-induced senescence. Taken together, all these observations indicate that overexpression of EcGLYIII confers salinity stress tolerance in plants and should be explored further for the generation of stress-tolerant plants.


Assuntos
Lactoilglutationa Liase , Tolerância ao Sal , Aldeído Oxirredutases , Antioxidantes/metabolismo , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , NADP/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Estresse Fisiológico , Nicotiana
16.
Physiol Plant ; 174(3): e13702, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35524987

RESUMO

Soil salinity is one of the most serious threats to plant growth and productivity. Due to global climate change, burgeoning population and shrinking arable land, there is an urgent need to develop crops with minimum reduction in yield when cultivated in salt-affected areas. Salinity stress imposes osmotic stress as well as ion toxicity, which impairs major plant processes such as photosynthesis, cellular metabolism, and plant nutrition. One of the major effects of salinity stress in plants includes the disturbance of ion homeostasis in various tissues. In the present study, we aimed to review the regulation of uptake, transport, storage, efflux, influx, and accumulation of various ions in plants under salinity stress. We have summarized major research advancements towards understanding the ion homeostasis at both cellular and whole-plant level under salinity stress. We have also discussed various factors regulating the function of ion transporters and channels in maintaining ion homeostasis and ionic interactions under salt stress, including plant antioxidative defense, osmo-protection, and osmoregulation. We further elaborated on stress perception at extracellular and intracellular levels, which triggers downstream intracellular-signaling cascade, including secondary messenger molecules generation. Various signaling and signal transduction mechanisms under salinity stress and their role in improving ion homeostasis in plants are also discussed. Taken together, the present review focuses on recent advancements in understanding the regulation and function of different ion channels and transporters under salt stress, which may pave the way for crop improvement.


Assuntos
Bombas de Íon/metabolismo , Salinidade , Tolerância ao Sal , Íons , Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico
17.
Physiol Plant ; 174(3): e13691, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35575899

RESUMO

Rice yield and heading date are the two discrete traits controlled by quantitative trait loci (QTLs). Both traits are influenced by the genetic make-up of the plant as well as the environmental factors where it thrives. Drought and salinity adversely affect crop productivity in many parts of the world. Tolerance to these stresses is multigenic and complex in nature. In this study, we have characterized a QTL, DTH8 (days to heading) from Oryza sativa L. cv IR64 that encodes a putative HAP3/NF-YB/CBF subunit of CCAAT-box binding protein (HAP complex). We demonstrate DTH8 to be positively influencing the yield, heading date, and stress tolerance in IR64. DTH8 up-regulates the transcription of RFT1, Hd3a, GHD7, MOC1, and RCN1 in IR64 at the pre-flowering stage and plays a role in early flowering, increased number of tillers, enhanced panicle branching, and improved tolerance towards drought and salinity stress at the reproductive stage. The presence of DTH8 binding elements (CCAAT) in the promoter regions of all of these genes, predicted by in silico analysis of the promoter region, indicates the regulation of their expression by DTH8. In addition, DTH8 overexpressing transgenic lines showed favorable physiological parameters causing less yield penalty under stress than the WT plants. Taken together, DTH8 is a positive regulator of the network of genes related to early flowering/heading, higher yield, as well as salinity and drought stress tolerance, thus, enabling the crops to adapt to a wide range of climatic conditions.


Assuntos
Oryza , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética
18.
Physiol Plant ; 174(2): e13651, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35174506

RESUMO

Root system architecture plays an important role in plant adaptation to drought stress. The root system architecture (RSA) consists of several structural features, which includes number and length of main and lateral roots along with the density and length of root hairs. These features exhibit plasticity under water-limited environments and could be critical to developing crops with efficient root systems for adaptation under drought. Recent advances in the omics approaches have significantly improved our understanding of the regulatory mechanisms of RSA remodeling under drought and the identification of genes and other regulatory elements. Plant response to drought stress at physiological, morphological, biochemical, and molecular levels in root cells is regulated by various phytohormones and their crosstalk. Stress-induced reactive oxygen species play a significant role in regulating root growth and development under drought stress. Several transcription factors responsible for the regulation of RSA under drought have proven to be beneficial for developing drought tolerant crops. Molecular breeding programs for developing drought-tolerant crops have been greatly benefitted by the availability of quantitative trait loci (QTLs) associated with the RSA regulation. In the present review, we have discussed the role of various QTLs, signaling components, transcription factors, microRNAs and crosstalk among various phytohormones in shaping RSA and present future research directions to better understand various factors involved in RSA remodeling for adaptation to drought stress. We believe that the information provided herein may be helpful in devising strategies to develop crops with better RSA for efficient uptake and utilization of water and nutrients under drought conditions.


Assuntos
Secas , Raízes de Plantas , Reguladores de Crescimento de Plantas , Raízes de Plantas/fisiologia , Fatores de Transcrição , Água
19.
Physiol Plant ; 174(1): e13638, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35092312

RESUMO

Abiotic stresses are emerging as a potential threat to sustainable agriculture worldwide. Soil salinity and drought will be the major limiting factors for rice productivity in years to come. The Salt Overly Sensitive (SOS) pathway plays a key role in salinity tolerance by maintaining the cellular ion homeostasis, with SOS2, a S/T kinase, being a vital component. The present study investigated the role of the OsSOS2, a SOS2 homolog from rice, in improving salinity and drought tolerance. Transgenic plants with either overexpression (OE) or knockdown (KD) of OsSOS2 were raised in one of the high-yielding cultivars of rice-IR64. Using a combined approach based on physiological, biochemical, anatomical, microscopic, molecular, and agronomic assessment, the evidence presented in this study advocates the role of OsSOS2 in improving salinity and drought tolerance in rice. The OE plants were found to have favorable ion and redox homeostasis when grown in the presence of salinity, while the KD plants showed the reverse pattern. Several key stress-responsive genes were found to work in an orchestrated manner to contribute to this phenotype. Notably, the OE plants showed tolerance to stress at both the seedling and the reproductive stages, addressing the two most sensitive stages of the plant. Keeping in mind the importance of developing crops plants with tolerance to multiple stresses, the present study established the potential of OsSOS2 for biotechnological applications to improve salinity and drought stress tolerance in diverse cultivars of rice.


Assuntos
Oryza , Secas , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Salinidade , Tolerância ao Sal/genética , Estresse Fisiológico/genética
20.
Physiol Plant ; 174(2): e13631, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35049071

RESUMO

OsCYP2-P is an active cyclophilin (having peptidyl-prolyl cis/trans-isomerase activity, PPIase) isolated from the wild rice Pokkali having a natural capacity to grow and yield seeds in coastal saline regions of India. Transcript abundance analysis in rice seedlings showed the gene is inducible by multiple stresses, including salinity, drought, high temperature, and heavy metals. To dissect the role of OsCYP2-P gene in stress response, we raised overexpression (OE) and knockdown (KD) transgenic rice plants with >2-3 folds higher and approximately 2-fold lower PPIase activity, respectively. Plants overexpressing this gene had more favorable physiological and biochemical parameters (K+ /Na+ ratio, electrolytic leakage, membrane damage, antioxidant enzymes) than wild type, and the reverse was observed in plants that were knocked down for this gene. We propose that OsCYP2-P contributes to stress tolerance via maintenance of ion homeostasis and thus prevents toxic cellular ion buildup and membrane damage. OE plants were found to have a higher harvest index and higher number of filled grains under salinity and drought stress than wild type. OsCYP2-P interacts with calmodulin, indicating it functions via the Ca-CaM pathway. Compared to the WT, the germinating OE seeds exhibited a substantially higher auxin level, and this hormone was below the detection limits in the WT and KD lines. These observations strongly indicate that OsCyp2-P affects the signaling and transport of auxin in rice.


Assuntos
Oryza , Calmodulina/genética , Calmodulina/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA