Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 18(1): 492, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28659185

RESUMO

BACKGROUND: In the course of replication of eukaryotic chromosomes, the telomere length is maintained due to activity of telomerase, the ribonucleoprotein reverse transcriptase. Abolishing telomerase function causes progressive shortening of telomeres and, ultimately, cell cycle arrest and replicative senescence. To better understand the cellular response to telomerase deficiency, we performed a transcriptomic study for the thermotolerant methylotrophic yeast Hansenula polymorpha DL-1 lacking telomerase activity. RESULTS: Mutant strain of H. polymorpha carrying a disrupted telomerase RNA gene was produced, grown to senescence and analyzed by RNA-seq along with wild type strain. Telomere shortening induced a transcriptional response involving genes relevant to telomere structure and maintenance, DNA damage response, information processing, and some metabolic pathways. Genes involved in DNA replication and repair, response to environmental stresses and intracellular traffic were up-regulated in senescent H. polymorpha cells, while strong down-regulation was observed for genes involved in transcription and translation, as well as core histones. CONCLUSIONS: Comparison of the telomerase deletion transcription responses by Saccharomyces cerevisiae and H. polymorpha demonstrates that senescence makes different impact on the main metabolic pathways of these yeast species but induces similar changes in processes related to nucleic acids metabolism and protein synthesis. Up-regulation of a subunit of the TORC1 complex is clearly relevant for both types of yeast.


Assuntos
Genômica , Pichia/enzimologia , Pichia/genética , Telomerase/deficiência , Termotolerância , Transcrição Gênica , Autofagia/genética , Metabolismo dos Carboidratos/genética , Dano ao DNA/genética , Metabolismo Energético/genética , Meio Ambiente , Genes Fúngicos/genética , Espaço Intracelular/metabolismo , Pichia/citologia , Pichia/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética , Encurtamento do Telômero/genética
2.
Biomol NMR Assign ; 10(1): 183-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26721464

RESUMO

Telomerase is a ribonucleoprotein enzyme that adds telomeric DNA fragments to the ends of chromosomes. This enzyme is the focus of substantial attention, both because its structure and mechanism of action are still poorly studied, and because of its pivotal roles in aging and cellular proliferation. The use of telomerase as a potential target for the design of new anticancer drugs is also of great interest. The catalytic protein subunit of telomerase (TERT) contains an N-terminal domain (TEN) that is essential for activity and processivity. Elucidation of the structure and dynamics of TEN in solution is important for understanding the molecular mechanism of telomerase activity and for the design of new telomerase inhibitors. To approach this problem, in this study we report the (1)H, (13)C, and (15)N chemical shift assignments of TEN from Ogataea polymorpha. Analysis of the assigned chemical shifts allowed us to identify secondary structures and protein regions potentially involved in interaction with other participants of the telomerase catalytic cycle.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Saccharomycetales/enzimologia , Telomerase/química , Sequência de Aminoácidos , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA