Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Small ; 15(43): e1904031, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31496116

RESUMO

Uniform Ag nanocubes are reproducibly synthesized by a AgCl particle-mediated heterogeneous nucleation and disassembly process in polyol chemistry. By introducing N,N-dimethylformamide (DMF) in a conventional polyol method with HCl etchant, Ag nanocrystals (NCs) begin to be nucleated on the surface of AgCl-precipitated particles due to the promoted reduction reaction by DMF. The nucleated Ag NCs on the AgCl particles are grown to Ag nanocubes in shape by consuming Ag sources from the AgCl mother particles. Eventually the grown Ag nanocubes are disassembled from the mother AgCl particles because the AgCl particles are fully digested by the growing Ag nanocubes. Density functional theory calculation confirms that the Ag atoms can be favorably deposited on the (100) facet of AgCl particles and the Ag nuclei on the AgCl particles tend to reveal (100) facet.

2.
Soft Matter ; 15(40): 8051-8058, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31549697

RESUMO

In this study, we measured the force of electrostatic interactions between poly(methyl methacrylate) (PMMA) particles dispersed in organic solvent mixtures of cyclohexyl bromide (CHB) and n-decane. Optical laser tweezers were employed to directly measure interactive forces between paired PMMA particles in a CHB medium that contained n-decane in various volume ratios. CHB, having a moderate dielectric constant, provided an environment with a high charge storage capacity. The addition of n-decane lowered the effective refractive index of the medium, which increased the optical trapping efficiency. We also fabricated microscope flow cells with a commonly used UV-curable adhesive and quantified the effects of dissolved adhesive compounds through interactive force measurements and nuclear magnetic resonance analysis. In addition, we studied the impact of CHB dissociation into H+ and Br- ions, which could screen electrostatic interactions.

3.
Langmuir ; 34(30): 8839-8847, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29985624

RESUMO

The stochastic interface adsorption behaviors of ellipsoid particles were investigated using optical laser tweezers. The particles were brought close to the oil-water interface, attempting to attach forcefully to the interface. Multiple attempts of the particle attachments statistically quantified the dependence of the adsorption probability on the particle aspect ratio. It was found that the adsorption probability proportionally increased with the aspect ratio because of the decrease in electrostatic interactions between the charged particles and the charged interface for higher aspect ratio particles. In addition, the adsorption holding time required for the interface attachments was found to increase as the aspect ratio decreased. Notably, the probabilistic adsorption behaviors of the ellipsoid particles and the holding time dependence revealed that the particle adsorption to the interface occurred stochastically, not deterministically. We also demonstrated that the adsorption behaviors measured on a single-particle scale were consistent with the gravity-induced spontaneous adsorption properties performed on a large scale with regard to the nondeterministic adsorption behaviors and the aspect ratio dependence on the adsorption probability.

4.
Langmuir ; 34(1): 384-394, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29232143

RESUMO

Heterogeneous capillary interactions between ellipsoid particles at the oil-water interface were measured via optical laser tweezers. Two trapped particles were aligned in either tip-to-tip (tt) or side-to-side (ss) configurations via the double-trap method and were released from the optical traps, leading to particle-particle attractions due to the capillary forces caused by quadrupolar interface deformation. On the basis of image analysis and calculations of the Stokes drag force, the capillary interactions between two ellipsoid particles with the same aspect ratio (E) were found to vary with the particle pairs that were measured, indicating that the interactions were nondeterministic or heterogeneous. Heterogeneous capillary interactions could be attributed to undulation of the interface meniscus due to chemical and/or geometric particle heterogeneity. The power law exponent for the capillary interaction Ucap ≈ r-ß was found to be ß ≈ 4 and was independent of the aspect ratio and particle configuration in long-range separations. Additionally, with regard to the tt configuration, the magnitude of the capillary force proportionally increased with the E value (E > 1) when two ellipsoid particles approached each other in the tt configuration.

5.
Acc Chem Res ; 49(6): 1211-22, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27159417

RESUMO

Hydrochromic materials, which undergo changes in their light absorption and/or emission properties in response to water, have been extensively investigated as humidity sensors. Recent advances in the design of these materials have led to novel applications, including monitoring the water content of organic solvents, water-jet-based rewritable printing on paper, and hydrochromic mapping of human sweat pores. Our interest in this area has focused on the design of hydrochromic materials for human sweat pore mapping. We recognized that materials appropriate for this purpose must have balanced sensitivities to water. Specifically, while they should not undergo light absorption and/or emission transitions under ambient moisture conditions, the materials must have sufficiently high hydrochromic sensitivities that they display responses to water secreted from human sweat pores. In this Account, we describe investigations that we have carried out to develop hydrochromic substances that are suitable for human sweat pore mapping. Polydiacetylenes (PDAs) have been extensively investigated as sensor matrices because of their stimulus-responsive color change property. We found that incorporation of headgroups composed of hygroscopic ions such as cesium or rubidium and carboxylate counterions enables PDAs to undergo a blue-to-red colorimetric transition as well as a fluorescence turn-on response to water. Very intriguingly, the small quantities of water secreted from human sweat pores were found to be sufficient to trigger fluorescence turn-on responses of the hydrochromic PDAs, allowing precise mapping of human sweat pores. Since the hygroscopic ion-containing PDAs developed in the initial stage display a colorimetric transition under ambient conditions that exist during humid summer periods, a new system was designed. A PDA containing an imidazolium ion was found to be stable under all ambient conditions and showed temperature-dependent hydrochromism corresponding to a colorimetric change near body temperature. This feature enables the use of this technique to generate high-quality images of sweat pores. This Account also focuses on the results of the most recent phase of this investigation, which led to the development of a simple yet efficient and reliable technique for sweat pore mapping. The method utilizes a hydrophilic polymer composite film containing fluorescein, a commercially available dye that undergoes a fluorometric response as a result of water-dependent interconversion between its ring-closed spirolactone (nonfluorescent) and ring-opened fluorone (fluorescent) forms. Surface-modified carbon nanodots (CDs) have also been found to be efficient for hydrochromic mapping of human sweat pores. The results discovered by Lou et al. [ Adv. Mater. 2015 , 27 , 1389 ] are also included in this Account. Sweat pore maps obtained from fingertips using these materials were found to be useful for fingerprint analysis. In addition, this hydrochromism-based approach is sufficiently sensitive to enable differentiation between sweat-secreting active pores and inactive pores. As a result, the techniques can be applied to clinical diagnosis of malfunctioning sweat pores. The directions that future research in this area will follow are also discussed.


Assuntos
Pele/anatomia & histologia , Suor , Carbono/química , Fluoresceína/química , Humanos , Nanopartículas/química , Polímero Poliacetilênico , Polímeros/química , Poli-Inos/química
6.
Soft Matter ; 13(36): 6234-6242, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28805212

RESUMO

The heterogeneous adsorption behaviors of charged colloidal particles to oil-water interfaces were quantitatively and statistically investigated. Using optical laser tweezers, the particles in a sessile water drop formed in an oil phase were laterally translated toward the slope of the oil-water interface and their attachment to the interface was attempted. The adsorption probability was found to logarithmically decrease as the ionic strength decreased and to depend on the holding time during which an optically trapped particle was held at the position closest to the interface. Non-unity of the adsorption probability at particular salt concentrations and the holding time dependence offer an important clue that the particle adsorption to the interface is not deterministic but stochastic. The stochastic adsorption process can be attributed to the surface heterogeneity of colloidal particles that consequently leads to changes in the electrostatic interactions between the particles and the interface. We also demonstrated that the salt dependence on the adsorption properties of the particles, as measured by optical laser tweezers, was consistent with their bulk behaviors with regard to the stability of particle-stabilized emulsions. Furthermore, we revealed the gravity-induced spontaneous adsorption of the particles to the interface under conditions of sufficiently strong ionic strength.

7.
Soft Matter ; 13(37): 6647-6658, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28926066

RESUMO

We investigated the electrostatic interactions between particles acting through heterogeneous fluid phases. An oil lens system floating on the surface of water was used to trap particles at different fluid-fluid interfaces. The inner particles are located at the centrosymmetrically curved oil-water interface inside the oil lens while satellite particles are located at the curved air-water interface, separated by a particular distance from the triple phase boundary. The satellite particles are likely to be captured in an energy minimum state due to electrostatic repulsions by the inner particles balanced with the gravity-induced potential energy. As the size of the oil lens decreases upon evaporation, the satellite particles escape from the gravitational confinement at a critical moment. The self-potential values of the inner particles and the satellite particles were calculated by employing an energy balance and the experimentally obtained geometric parameter values. It was found that the self-potential values of the inner particles decrease as oil evaporates over time and that the magnitude of the self-potential of the satellite particles is a hundred times larger than that of the inner particles. These results demonstrate significant effects of the thickness and shape of the nonpolar superphase on the electrostatic interactions between the particles trapped at different fluid-fluid interfaces.

8.
Soft Matter ; 12(27): 5847-53, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27328067

RESUMO

Directed self-assembly can produce ordered or organized superstructures from pre-existing building blocks through pre-programmed interactions. Encoding desired information into building blocks with specific directionality and strength, however, poses a significant challenge for the development of self-assembled superstructures. Here, we demonstrate that controlling the shape and patchiness of particles trapped at the air-water interface can represent a powerful approach for forming ordered macroscopic complex structures through capillary interactions. We designed hexagram particles using a micromolding method that allowed for precise control over the shape and, more importantly, the chemical patchiness of the particles. The assembly behaviors of these hexagram particles at the air-water interface were strongly affected by chemical patchiness. In particular, two-dimensional millimeter-scale ordered structures could be formed by varying the patchiness of the hexagram particles, and we attribute this effect to the delicate balance between the attractive and repulsive interactions among the patchy hexagram particles. Our results provide important clues for encoding information into patchy particles to achieve macroscopic assemblies via a simple molding technique and potentially pave a new pathway for the programmable assembly of particles at the air-water interface.

9.
Angew Chem Int Ed Engl ; 55(14): 4509-13, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26934183

RESUMO

Janus particles endowed with controlled anisotropies represent promising building blocks and assembly materials because of their asymmetric functionalities. Herein, we show that using the seeded monomer swelling and polymerization technique allows us to obtain bi-compartmentalized Janus microparticles that are generated depending on the phase miscibility of the poly (alkyl acrylate) chains against the polystyrene seed, thus minimizing the interfacial free energy. When tetradecyl acrylate is used, complete compartmentalization into two distinct bulbs can be achieved, while tuning the relative dimension ratio of compartmented bulb against the whole particle. Finally, we have demonstrated that selectively patching the silica nanoparticles onto one of the bulb surfaces gives amphiphilicity to the particles that can assemble at the oil-water interface with a designated level of adhesion, thus leading to development of a highly stable Pickering emulsion system.

10.
Small ; 11(35): 4560-7, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26111371

RESUMO

Particles trapped at fluid interfaces experience long-range interactions that determine their assembly behavior. Because particle interactions at fluid interfaces tend to be unusually strong, once particles organize themselves into a 2D assembly, it is challenging to induce changes in their microstructure. In this report, a new approach is presented to induce reversible order-disorder transitions (ODTs) in the 2D monolayer of colloidal particles trapped at a soft gel-fluid interface. Particles at the soft interface, consisting of a nonpolar superphase and a weakly gelled subphase, initially form a monolayer with a highly ordered structure. The structure of this monolayer can be dynamically varied by the addition or removal of the oil phase. Upon removing the oil via evaporation, the initially ordered particle monolayer undergoes ODT, driven by capillary attractions. The ordered monolayer can be recovered through disorder-to-order transition by simply adding oil atop the particle-laden soft interface. The possibility to dynamically tune the interparticle interactions using soft interfaces can potentially enable control of the transport and mechanical properties of particle-laden interfaces and provide model systems to study particle-laden soft interfaces that are relevant to biological tissues or organs.

12.
Soft Matter ; 11(45): 8812-7, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26394235

RESUMO

Heterogeneity in the interactions between colloidal particles at an oil-water interface is explored on a single particle level. Such a characteristic arises due to heterogeneity in self-potentials that individual particles possess. Energy minimization is numerically performed to determine the self-potentials of single colloids when the interface-trapped particles form uniquely arranged structures. We demonstrate that the obtained self-potentials correspond to the dipole strength of individual particles at the interface that can be attributed to the generation of abnormally strong and long-range repulsive interactions that should also be heterogeneous. The characterization of self-potentials on a single-particle level can potentially provide insight into the origin of heterogeneity of colloidal suspension systems at multiphasic fluid interfaces. Furthermore, the findings obtained here may facilitate an understanding of the hierarchical relationships associated with scale-dependent colloidal particle behaviors that arise due to interaction heterogeneity.

13.
Soft Matter ; 11(44): 8701-6, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26376957

RESUMO

We study the lateral capillary interactions between colloids beneath an oil-water interface that lead to closely packed two-dimensional self-assembled colloidal crystals. These capillary forces are caused by the overlap of deformed interfaces above colloids on a solid substrate. The interface deformation is due to the electrostatic disjoining pressure between the charged particles and the charged oil-water interface. It is notable that the short-range (i.e., on the nanometer scale) and out-of-plane electrostatic double-layer interactions, which occur through an aqueous phase, can generate the long-range lateral capillary attraction (i.e., on the micrometer scale).

14.
Soft Matter ; 11(2): 318-23, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25408473

RESUMO

We report the unique arrangement behaviour of colloidal particles at a curved oil-water interface. Particles trapped at a centrosymmetrically curved oil-water interface, formed by placing an oil lens at a neat air-water interface, organize into diverse arrangement structures due to electrostatic repulsion under the gravitational field. To reveal a possible mechanism behind the observed diversity, we investigate the interactions between pairs of particles at the curved oil-water interface. The magnitude of electrostatic repulsive interactions between pairs of particles is determined by minimizing the total potential of the particle pairs. We show that the pair interactions are quite heterogeneous, following a Gamma distribution. Using the experimentally determined pair potential and the heterogeneity in the potential as input parameters for Monte Carlo simulations, we show that such interaction heterogeneity affects the particle arrangements at the curved interface and results in an observed diversity in the particle arrangement structures. We believe that this work prompts further experimental and simulation studies to extensively understand hierarchical relations from small scale measurements (e.g., pair interactions and heterogeneity) to bulk scale properties (e.g., microstructure and interfacial rheology).

15.
Soft Matter ; 11(11): 2067-79, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25698443

RESUMO

Microbubbles with diameters ranging from a few micrometers to tens of micrometers have garnered significant attention in various applications including food processing, water treatment, enhanced oil recovery, surface cleaning, medical purposes, and material preparation fields with versatile functionalities. A variety of techniques have been developed to prepare microbubbles, such as ultrasonication, excimer laser ablation, high shear emulsification, membrane emulsification, an inkjet printing method, electrohydrodynamic atomization, template layer-by-layer deposition, and microfluidics. Generated bubbles should be immediately stabilized via the adsorption of stabilizing materials (e.g., surfactants, lipids, proteins, and solid particles) onto the gas-liquid interface to lower the interfacial tension. Such adsorption of stabilizers prevents coalescence between the microbubbles and also suppresses gas dissolution and resulting disproportionation caused by the presence of the Laplace overpressure across the gas-liquid interface. Herein, we comprehensively review three important topics of microbubbles: stabilization, fabrication, and applications.


Assuntos
Materiais Biocompatíveis/farmacologia , Tecnologia Biomédica , Teste de Materiais/métodos , Microbolhas , Microfluídica , Propriedades de Superfície
16.
Langmuir ; 30(37): 11055-61, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25151853

RESUMO

We present the optical trapping forces that are generated when a single laser beam strongly focuses on a coated dielectric microsphere. On the basis of geometrical optics approximation (GOA), in which a particle intercepts all of the rays that make up a single laser beam, we calculate the trapping forces with varying coating thickness and refractive index values. To increase the optical trapping efficiency, the refractive index (n(b)) of the coating is selected such that n(a) < n(b) < n(c), where na and nc are the refractive indices of the medium and the core material, respectively. The thickness of the coating also increases trapping efficiency. Importantly, we find that trapping forces for the coated particles are predominantly determined by two rays: the incident ray and the first refracted ray to the medium.


Assuntos
Microesferas , Fenômenos Ópticos
17.
Langmuir ; 30(44): 13199-204, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25343726

RESUMO

We present the interactions and assembly of triblock cylinders at oil-water and air-water interfaces. ABA-type triblock cylinders with different block ratios and surface wettabilities are prepared using a micromolding method. These triblock cylinders at fluid-fluid interfaces induce complex interface deformation depending upon their relative block ratio and the surface wettability. It is observed that triblock cylinders generate octapolar interface deformation at the air-water interface, whereas the same cylinders cause quadrupolar deformation at the oil-water interface. Consequently, the interactions and assembly behavior of these triblock cylinders at each fluid interface strongly depend upon the nature of the interface deformation.


Assuntos
Óleos/química , Água/química , Ar
18.
Langmuir ; 30(10): 2828-34, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24564739

RESUMO

We present a facile and inexpensive approach without any fluorinated chemistry to create superhydrophobic surface with exceptional liquid repellency, transportation of oil, selective capture of oil, optical bar code, and self-cleaning. Here we show experimentally that the control of evaporation is important and can be used to form superhydrophobic surface driven by Marangoni instability: the method involves in-situ photopolymerization in the presence of a volatile solvent and porous PDMS cover to afford superhydrophobic surfaces with the desired combination of micro- and nanoscale roughness. The porous PDMS cover significantly affects Marangoni convection of coating fluid, inducing composition gradients at the same time. In addition, the change of concentration of ethanol is able to produce versatile surfaces from hydrophilic to superhydrophobic and as a consequence to determine contact angles as well as roughness factors. In conclusion, the control of evaporation under the polymerization provides a convenient parameter to fabricate the superhydrophobic surface, without application of fluorinated chemistry and the elegant nanofabrication technique.


Assuntos
Molhabilidade , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
19.
Soft Matter ; 10(48): 9675-80, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25363564

RESUMO

We present the pairwise interaction behaviour of colloids confined to two-dimensional (2D) colloidal cages using optical laser tweezers. A single probe particle inside hexagonal cage particles at a planar oil-water interface is allowed to diffuse freely and the spring constant is extracted from its trajectories. To evaluate the effect of multibody interactions, the pair interactions between the probe particle and each cage particle are directly measured by using optical tweezers. Based on pairwise additivity, Monte Carlo simulations are used to compare the values of the spring constant obtained from experiments and simulations. We find that the multibody interactions negligibly occur and thus the particle interactions confined to such colloidal cages are highly pairwise. This work demonstrates that the use of the pairwise assumption in numerical simulations is rational when interparticle repulsive interactions are sufficiently strong, such as the particle interactions at fluid-fluid interfaces.

20.
J Phys Chem Lett ; 15(16): 4367-4374, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38619891

RESUMO

Understanding deracemization is crucial for progress in chiral chemistry, especially for improving separation techniques. Here, we first report the phenomenon of chiral flipping (or reverse deracemization) in a chiral material (i.e., sodium chlorate crystals) during Viedma deracemization, employing a small-volume reactor system for precise analysis. We observe considerable chiral flipping, influenced by the initial imbalance in the numbers of L- and D-form particles. We developed a simple probabilistic model to further elucidate this behavior. We find that the fluctuation in the populations of chiral crystal particles resulting from their random dissolution and regeneration is the key factor behind chiral flipping. This study not only brings to light this intriguing observation of chiral flipping but also contributes to the enhancement of deracemization techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA