Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Phys Rev Lett ; 133(11): 116402, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39332011

RESUMO

Although plasmons and phonons are the collective excitations that govern the low-energy physics of doped semiconductors, their nonadiabatic hybridization and mutual screening have not been studied from first principles. We achieve this goal by transforming the Dyson equation to the frequency-independent dynamical matrix of an equivalent damped oscillator. Calculations on doped GaAs and TiO_{2} agree well with available Raman data and await immediate experimental confirmation from infrared, neutron, electron-energy-loss, and angle-resolved photoemission spectroscopies.

2.
Phys Rev Lett ; 132(10): 106402, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518315

RESUMO

The nonlinear Hall effect has attracted much attention due to the famous, widely adopted interpretation in terms of the Berry curvature dipole in momentum space. Using ab initio Boltzmann transport equations, we find a 60% enhancement in the nonlinear Hall effect of n-doped GeTe and its noticeable frequency dependence, qualitatively different from the predictions based on the Berry curvature dipole. The origin of these differences is long-lived valley polarization in the electron distribution arising from electron-phonon scattering. Our findings await immediate experimental confirmation.

3.
Biotechnol Bioeng ; 120(9): 2494-2508, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37079452

RESUMO

Recently, the advancement in process analytical technology and artificial intelligence (AI) has enabled the generation of enormous culture data sets from biomanufacturing processes that produce various recombinant therapeutic proteins (RTPs), such as monoclonal antibodies (mAbs). Thus, now it is very important to exploit them for the enhanced reliability, efficiency, and consistency of the RTP-producing culture processes and for the reduced incipient or abrupt faults. It is achievable by AI-based data-driven models (DDMs), which allow us to correlate biological and process conditions and cell culture states. In this work, we provide practical guidelines for choosing the best combination of model elements to design and implement successful DDMs for given hypothetical in-line data sets during mAb-producing Chinese hamster ovary cell culture, as such enabling us to forecast dynamic behaviors of culture performance such as viable cell density, mAb titer as well as glucose, lactate and ammonia concentrations. To do so, we created DDMs that balance computational load with model accuracy and reliability by identifying the best combination of multistep ahead forecasting strategies, input features, and AI algorithms, which is potentially applicable to implementation of interactive DDM within bioprocess digital twins. We believe this systematic study can help bioprocess engineers start developing predictive DDMs with their own data sets and learn how their cell cultures behave in near future, thereby rendering proactive decision possible.


Assuntos
Inteligência Artificial , Técnicas de Cultura de Células , Cricetinae , Animais , Cricetulus , Células CHO , Reprodutibilidade dos Testes , Anticorpos Monoclonais/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Nano Lett ; 21(23): 10114-10121, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34817186

RESUMO

A magnetic model with an unprecedentedly large number of parameters was determined from first-principles calculations for transition-metal phosphorus trisulfides (TMPS3's), reproducing the measured magnetic ground states of bulk TMPS3's. Our Monte Carlo simulations for the critical temperature, magnetic susceptibility, and specific heat of bulk and few-layer TMPS3's agree well with available experimental data and show that the antiferromagnetic order of TMPS3's persists down to monolayers. Remarkably, the orbital polarization, neglected in recent first-principles studies, dramatically enhances the magnetic anisotropy of FePS3 by almost 2 orders of magnitude. A recent Raman study [Kim, K., Nat. Commun. 2019, 10, 345] claimed that magnetic ordering is absent in monolayer NiPS3 but simultaneously reported a strong two-magnon continuum; we show that the criterion used to judge magnetic ordering therein is invalid for monolayer NiPS3, providing an understanding of the two seemingly contradictory experimental results. The rich predictions on the magnetic susceptibility and specific heat of few-layer TMPS3's await experimental verifications.

5.
Nano Lett ; 18(5): 2759-2765, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29667831

RESUMO

The exfoliation energy, the energy required to peel off an atomic layer from the surface of a bulk material, is of fundamental importance in the science and engineering of two-dimensional materials. Traditionally, the exfoliation energy of a material has been obtained from first-principles by calculating the difference in the ground-state energy between (i) a slab of N atomic layers ( N ≫ 1) and (ii) a slab of N - 1 atomic layers plus an atomic layer separated from the slab. In this paper, we prove that the exfoliation energy can be obtained exactly as the difference in the ground-state energy between a bulk material (per atomic layer) and a single isolated layer. The proposed method is (i) tremendously lower in computational cost than the traditional approach because it does not require calculations on thick slabs, (ii) still valid even if there is a surface reconstruction of any kind, (iii) capable of taking into account the relaxation of the single exfoliated layer (both in-plane lattice parameters and atomic positions), and (iv) easily combined with all kinds of many-body computational methods. As a proof of principles, we calculated exfoliation energies of graphene, hexagonal boron nitride, MoS2, and phosphorene using density-functional theory. In addition, we found that the in-plane relaxation of an exfoliated layer accounts for 5% of one-layer exfoliation energy of phosphorene while it is negligible (<0.4%) in the other cases.

6.
Phys Rev Lett ; 120(13): 136402, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694193

RESUMO

Strong charge-spin coupling is found in a layered transition-metal trichalcogenide NiPS_{3}, a van der Waals antiferromagnet, from studies of the electronic structure using several experimental and theoretical tools: spectroscopic ellipsometry, x-ray absorption, photoemission spectroscopy, and density functional calculations. NiPS_{3} displays an anomalous shift in the optical spectral weight at the magnetic ordering temperature, reflecting strong coupling between the electronic and magnetic structures. X-ray absorption, photoemission, and optical spectra support a self-doped ground state in NiPS_{3}. Our work demonstrates that layered transition-metal trichalcogenide magnets are useful candidates for the study of correlated-electron physics in two-dimensional magnetic materials.

7.
Phys Rev Lett ; 119(26): 266401, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29328719

RESUMO

The low-energy quasiparticles of Weyl semimetals are a condensed-matter realization of the Weyl fermions introduced in relativistic field theory. Chiral anomaly, the nonconservation of the chiral charge under parallel electric and magnetic fields, is arguably the most important phenomenon of Weyl semimetals and has been explained as an imbalance between the occupancies of the gapless, zeroth Landau levels with opposite chiralities. This widely accepted picture has served as the basis for subsequent studies. Here we report the breakdown of the chiral anomaly in Weyl semimetals in a strong magnetic field based on ab initio calculations. A sizable energy gap that depends sensitively on the direction of the magnetic field may open up due to the mixing of the zeroth Landau levels associated with the opposite-chirality Weyl points that are away from each other in the Brillouin zone. Our study provides a theoretical framework for understanding a wide range of phenomena closely related to the chiral anomaly in topological semimetals, such as magnetotransport, thermoelectric responses, and plasmons, to name a few.

8.
Nature ; 471(7340): 617-20, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21412234

RESUMO

Inelastic light scattering spectroscopy has, since its first discovery, been an indispensable tool in physical science for probing elementary excitations, such as phonons, magnons and plasmons in both bulk and nanoscale materials. In the quantum mechanical picture of inelastic light scattering, incident photons first excite a set of intermediate electronic states, which then generate crystal elementary excitations and radiate energy-shifted photons. The intermediate electronic excitations therefore have a crucial role as quantum pathways in inelastic light scattering, and this is exemplified by resonant Raman scattering and Raman interference. The ability to control these excitation pathways can open up new opportunities to probe, manipulate and utilize inelastic light scattering. Here we achieve excitation pathway control in graphene with electrostatic doping. Our study reveals quantum interference between different Raman pathways in graphene: when some of the pathways are blocked, the one-phonon Raman intensity does not diminish, as commonly expected, but increases dramatically. This discovery sheds new light on the understanding of resonance Raman scattering in graphene. In addition, we demonstrate hot-electron luminescence in graphene as the Fermi energy approaches half the laser excitation energy. This hot luminescence, which is another form of inelastic light scattering, results from excited-state relaxation channels that become available only in heavily doped graphene.


Assuntos
Grafite/química , Luz , Teoria Quântica , Espalhamento de Radiação , Elasticidade , Elétrons , Luminescência , Fótons , Análise Espectral Raman , Eletricidade Estática
9.
Nano Lett ; 16(4): 2439-43, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26907524

RESUMO

Graphene, as a semimetal with the largest known thermal conductivity, is an ideal system to study the interplay between electronic and lattice contributions to thermal transport. While the total electrical and thermal conductivity have been extensively investigated, a detailed first-principles study of its electronic thermal conductivity is still missing. Here, we first characterize the electron-phonon intrinsic contribution to the electronic thermal resistivity of graphene as a function of doping using electronic and phonon dispersions and electron-phonon couplings calculated from first-principles at the level of density-functional theory and many-body perturbation theory (GW). Then, we include extrinsic electron-impurity scattering using low-temperature experimental estimates. Under these conditions, we find that the in-plane electronic thermal conductivity κe of doped graphene is ∼300 W/mK at room temperature, independently of doping. This result is much larger than expected and comparable to the total thermal conductivity of typical metals, contributing ∼10% to the total thermal conductivity of bulk graphene. Notably, in samples whose physical or domain sizes are of the order of few micrometers or smaller, the relative contribution coming from the electronic thermal conductivity is more important than in the bulk limit, because lattice thermal conductivity is much more sensitive to sample or grain size at these scales. Last, when electron-impurity scattering effects are included we find that the electronic thermal conductivity is reduced by 30 to 70%. We also find that the Wiedemann-Franz law is broadly satisfied at low and high temperatures but with the largest deviations of 20-50% around room temperature.

10.
Nano Lett ; 16(12): 7433-7438, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960508

RESUMO

Magnetism in two-dimensional materials is not only of fundamental scientific interest but also a promising candidate for numerous applications. However, studies so far, especially the experimental ones, have been mostly limited to the magnetism arising from defects, vacancies, edges, or chemical dopants which are all extrinsic effects. Here, we report on the observation of intrinsic antiferromagnetic ordering in the two-dimensional limit. By monitoring the Raman peaks that arise from zone folding due to antiferromagnetic ordering at the transition temperature, we demonstrate that FePS3 exhibits an Ising-type antiferromagnetic ordering down to the monolayer limit, in good agreement with the Onsager solution for two-dimensional order-disorder transition. The transition temperature remains almost independent of the thickness from bulk to the monolayer limit with TN ∼ 118 K, indicating that the weak interlayer interaction has little effect on the antiferromagnetic ordering.

11.
Phys Rev Lett ; 115(12): 125501, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26431000

RESUMO

Metal-graphene-metal hybrid structures allow angstrom-scale van der Waals gaps, across which electron tunneling occurs. We squeeze terahertz electromagnetic waves through these λ/10 000 000 gaps, accompanied by giant field enhancements. Unprecedented transmission reduction of 97% is achieved with the transient voltage across the gap saturating at 5 V. Electron tunneling facilitated by the transient electric field strongly modifies the gap index, starting a self-limiting process related to the barrier height. Our work enables greater interplay between classical optics and quantum tunneling, and provides optical indices to the van der Waals gaps.

12.
Nano Lett ; 14(3): 1113-9, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24524418

RESUMO

We present a first-principles study of the temperature- and density-dependent intrinsic electrical resistivity of graphene. We use density-functional theory and density-functional perturbation theory together with very accurate Wannier interpolations to compute all electronic and vibrational properties and electron-phonon coupling matrix elements; the phonon-limited resistivity is then calculated within a Boltzmann-transport approach. An effective tight-binding model, validated against first-principles results, is also used to study the role of electron-electron interactions at the level of many-body perturbation theory. The results found are in excellent agreement with recent experimental data on graphene samples at high carrier densities and elucidate the role of the different phonon modes in limiting electron mobility. Moreover, we find that the resistivity arising from scattering with transverse acoustic phonons is 2.5 times higher than that from longitudinal acoustic phonons. Last, high-energy, optical, and zone-boundary phonons contribute as much as acoustic phonons to the intrinsic electrical resistivity even at room temperature and become dominant at higher temperatures.

13.
Phys Rev Lett ; 113(2): 026802, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062218

RESUMO

Electron supercollimation, in which a wave packet is guided to move undistorted along a selected direction, is a highly desirable property that has yet to be realized experimentally. Disorder in general is expected to inhibit supercollimation. Here we report a counterintuitive phenomenon of electron supercollimation by disorder in graphene and related Dirac fermion materials. We show that one can use one-dimensional disorder potentials to control electron wave packet transport. This is distinct from known systems where an electron wave packet would be further spread by disorder and hindered in the potential fluctuating direction. The predicted phenomenon has significant implications in the understanding and applications of electron transport in Dirac fermion materials.

14.
Proc Natl Acad Sci U S A ; 108(28): 11365-9, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709258

RESUMO

The Landau-Fermi liquid picture for quasiparticles assumes that charge carriers are dressed by many-body interactions, forming one of the fundamental theories of solids. Whether this picture still holds for a semimetal such as graphene at the neutrality point, i.e., when the chemical potential coincides with the Dirac point energy, is one of the long-standing puzzles in this field. Here we present such a study in quasi-freestanding graphene by using high-resolution angle-resolved photoemission spectroscopy. We see the electron-electron and electron-phonon interactions go through substantial changes when the semimetallic regime is approached, including renormalizations due to strong electron-electron interactions with similarities to marginal Fermi liquid behavior. These findings set a new benchmark in our understanding of many-body physics in graphene and a variety of novel materials with Dirac fermions.

15.
Phys Chem Chem Phys ; 15(2): 685-95, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23171936

RESUMO

Accurate and efficient approaches to predict the optical properties of organic semiconducting compounds could accelerate the search for efficient organic photovoltaic materials. Nevertheless, predicting the optical properties of organic semiconductors has been plagued by the inaccuracy or computational cost of conventional first-principles calculations. In this work, we demonstrate that orbital-dependent density-functional theory based upon Koopmans' condition [Phys. Rev. B, 2010, 82, 115121] is apt for describing donor and acceptor levels for a wide variety of organic molecules, clusters, and oligomers within a few tenths of an electron-volt relative to experiment, which is comparable to the predictive performance of many-body perturbation theory methods at a fraction of the computational cost.

16.
Phys Rev Lett ; 109(9): 097601, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-23002885

RESUMO

We show that the degree of spin polarization of photoelectrons from the surface states of topological insulators is 100% if fully polarized light is used as in typical photoemission measurements, and, hence, can be significantly higher than that of the initial state. Further, the spin orientation of these photoelectrons in general can also be very different from that of the initial surface state and is controlled by the photon polarization. A rich set of predicted phenomena have recently been confirmed by spin- and angle-resolved photoemission experiments.

17.
Nano Lett ; 11(7): 2596-600, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21699252

RESUMO

We investigate the effect of periodic potentials on the electronic structure of bilayer graphene and show that there is a critical value of the external potential below which new Dirac fermions are generated in the low-energy band structure, and above which a band gap is opened in the system. Our results, obtained from a self-consistent tight-binding calculation, can be simply explained by a two-band continuum model as a consequence of the pseudospin physics in graphene. The findings are robust against changes in the form of the potential, as well as bias voltages between the layers.


Assuntos
Elétrons , Grafite/química , Nanotecnologia , Teoria Quântica
18.
Nano Lett ; 10(2): 426-31, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20078108

RESUMO

Recent measurements have shown that a continuously tunable bandgap of up to 250 meV can be generated in biased bilayer graphene [ Zhang , Y. ; et al. Nature 2009, 459 , 820 ], opening up pathway for possible graphene-based nanoelectronic and nanophotonic devices operating at room temperature. Here, we show that the optical response of this system is dominated by bound excitons. The main feature of the optical absorbance spectrum is determined by a single symmetric peak arising from excitons, a profile that is markedly different from that of an interband transition picture. Under laboratory conditions, the binding energy of the excitons may be tuned with the external bias going from zero to several tens of millielectronvolts. These novel strong excitonic behaviors result from a peculiar, effective "one-dimensional" joint density of states and a continuously tunable bandgap in biased bilayer graphene. Moreover, we show that the electronic structure (level degeneracy, optical selection rules, etc.) of the bound excitons in a biased bilayer graphene is markedly different from that of a two-dimensional hydrogen atom because of the pseudospin physics.

19.
Anesth Pain Med (Seoul) ; 16(4): 387-390, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35139621

RESUMO

BACKGROUND: Although spinal cord stimulation (SCS) can be a treatment option for intractable postherpetic neuralgia (PHN), obtaining proper stimulation at the thoracic dermatome is difficult. Dorsal root ganglion (DRG) stimulation may be an effective treatment for patients with insufficient efficacy in SCS only. CASE: A 54-year-old male with intractable PHN was referred to our clinic. Pain was localized to the distribution of the T1-3 dermatomes. SCS trial was conducted, and lead was placed within the epidural space over the C6-T1 level; however, the stimulation was inadequate for his pain site. Therefore, another lead was placed within the left T1 and T2 DRG for trial, and T1 DRG stimulation provided adequate stimulation. T1 DRG stimulation and SCS could cover the entire pain site with paresthesia, and his pain was decreased by over 50%. CONCLUSIONS: DRG stimulation combined with SCS may be a good treatment option for intractable thoracic PHN.

20.
Phys Rev Lett ; 104(3): 036805, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20366671

RESUMO

We find the scanning tunneling spectra of backgated graphene monolayers to be significantly altered by many-body excitations. Experimental features in the spectra arising from electron-plasmon interactions show carrier density dependence, distinguishing them from density-independent electron-phonon features. Using a straightforward model, we are able to calculate theoretical tunneling spectra that agree well with our data, providing insight into the effects of many-body interactions on the lifetime of graphene quasiparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA