Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 30(33): 335402, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31026842

RESUMO

Piezoelectric materials convert external mechanical force into electrical energy, due to the breaking of the centrosymmetry of the atomic structure. Piezoelectricity-based nano-generators (PNGs) based on two-dimensional transition metal dichalcogenides (TMDs) can generate electrical energy stably by the piezoelectric effect at their nanoscale thickness. However, the commercialization of TMD-based PNGs is limited by their poor piezoelectric performance and microscale energy harvesting. Here, we present the first centimeter-scale PNGs based on molybdenum disulfide (MoS2) nanosheets with vertically grown hollow MoS2 nanoflakes (v-MoS2 NFs) obtained by chemical vapor deposition for energy harvesting from human motions. The collision of v-MoS2 NFs with a preferred odd-atomic-layer number and their 2H antiparallel phase leads to efficient electrical energy generation during the bending movement. Further, basal MoS2 films with v-MoS2 NFs are transferred onto flexible substrates via conventional polymer-assisted methods for the fabrication of attachable and wearable piezoelectric power generators.

2.
J Nanosci Nanotechnol ; 16(3): 2756-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27455703

RESUMO

The control in electrical properties of graphene is essentially required in order to realize graphenebased nanoelectronics. In this study, N-doped graphene was successfully obtained via nitrogen plasma treatment. Graphene was synthesized on copper foil using thermal chemical vapor deposition. After N2 plasma treatment, the G-band of the graphene was blueshifted and the intensity ratio of 2D- to G-bands decreased with increasing the plasma power. Pyrrolic-N bonding configuration induced by N2 plasma treatment was studied by X-ray photoelectron spectroscopy. Remarkably, electrical characterization including Hall measurement and I-V characteristics of the N-doped graphene exhibit semiconducting behavior as well as the n-type doping effect.


Assuntos
Grafite/química , Nitrogênio/química , Gases em Plasma , Espectroscopia Fotoeletrônica
3.
Nano Lett ; 15(1): 281-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25539134

RESUMO

Cutting-edge research in the band engineering of nanowires at the ultimate fine scale is related to the minimum scale of nanowire-based devices. The fundamental issue at the subnanometer scale is whether angle-resolved photoemission spectroscopy (ARPES) can be used to directly measure the momentum-resolved electronic structure of a single wire because of the difficulty associated with assembling single wire into an ordered array for such measurements. Here, we demonstrated that the one-dimensional (1D) confinement of electrons, which are transferred from external dopants, within a single subnanometer-scale wire (subnanowire) could be directly measured using ARPES. Convincing evidence of 1D electron confinement was obtained using two different gold subnanowires with characteristic single metallic bands that were alternately and spontaneously ordered on a stepped silicon template, Si(553). Noble metal atoms were adsorbed at room temperature onto the gold subnanowires while the overall structure of the wires was maintained. Only one type of gold subnanowire could be controlled using external noble metal dopants without transforming the metallic band of the other type of gold subnanowires. This result was confirmed by scanning tunnelling microscopy experiments and first-principles calculations. The selective control clearly showed that externally doped electrons could be confined within a single gold subnanowire. This experimental evidence was used to further investigate the effects of the disorder induced by external dopants on a single subnanowire using ARPES.

4.
J Am Chem Soc ; 137(21): 6897-905, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25973636

RESUMO

Vertical and lateral heterogeneous structures of two-dimensional (2D) materials have paved the way for pioneering studies on the physics and applications of 2D materials. A hybridized hexagonal boron nitride (h-BN) and graphene lateral structure, a heterogeneous 2D structure, has been fabricated on single-crystal metals or metal foils by chemical vapor deposition (CVD). However, once fabricated on metals, the h-BN/graphene lateral structures require an additional transfer process for device applications, as reported for CVD graphene grown on metal foils. Here, we demonstrate that a single-crystal h-BN/graphene lateral structure can be epitaxially grown on a wide-gap semiconductor, SiC(0001). First, a single-crystal h-BN layer with the same orientation as bulk SiC was grown on a Si-terminated SiC substrate at 850 °C using borazine molecules. Second, when heated above 1150 °C in vacuum, the h-BN layer was partially removed and, subsequently, replaced with graphene domains. Interestingly, these graphene domains possess the same orientation as the h-BN layer, resulting in a single-crystal h-BN/graphene lateral structure on a whole sample area. For temperatures above 1600 °C, the single-crystal h-BN layer was completely replaced by the single-crystal graphene layer. The crystalline structure, electronic band structure, and atomic structure of the h-BN/graphene lateral structure were studied by using low energy electron diffraction, angle-resolved photoemission spectroscopy, and scanning tunneling microscopy, respectively. The h-BN/graphene lateral structure fabricated on a wide-gap semiconductor substrate can be directly applied to devices without a further transfer process, as reported for epitaxial graphene on a SiC substrate.

5.
Nanotechnology ; 25(28): 285302, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24971722

RESUMO

There has been considerable interest in soft lithographic patterning processing of large scale graphene sheets due to the low cost and simplicity of the patterning process along with the exceptional electrical or physical properties of graphene. These properties include an extremely high carrier mobility and excellent mechanical strength. Recently, a study has reported that single layer graphene grown via chemical vapor deposition (CVD) was patterned and transferred to a target surface by controlling the surface energy of the polydimethylsiloxane (PDMS) stamp. However, applications are limited because of the challenge of CVD-graphene functionalization for devices such as chemical or bio-sensors. In addition, graphene-based layers patterned with a micron scale width on the surface of biocompatible silk fibroin thin films, which are not suitable for conventional CMOS processes such as the patterning or etching of substrates, have yet to be reported. Herein, we developed a soft lithographic patterning process via surface energy modification for advanced graphene-based flexible devices such as transistors or chemical sensors. Using this approach, the surface of a relief-patterned elastomeric stamp was functionalized with hydrophilic dimethylsulfoxide molecules to enhance the surface energy of the stamp and to remove the graphene-based layer from the initial substrate and transfer it to a target surface. As a proof of concept using this soft lithographic patterning technique, we demonstrated a simple and efficient chemical sensor consisting of reduced graphene oxide and a metallic nanoparticle composite. A flexible graphene-based device on a biocompatible silk fibroin substrate, which is attachable to an arbitrary target surface, was also successfully fabricated. Briefly, a soft lithographic patterning process via surface energy modification was developed for advanced graphene-based flexible devices such as transistors or chemical sensors and attachable devices on a biocompatible silk fibroin substrate. Significantly, this soft lithographic patterning technique enables us to demonstrate a simple and efficient chemical sensor based on reduced graphene oxide (rGO), a metallic nanoparticle composite, and an attachable graphene-based device on a silk fibroin thin film.


Assuntos
Grafite/química , Técnicas Biossensoriais/métodos , Dimetilpolisiloxanos/química , Fibroínas/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Óxidos/química , Seda/química , Propriedades de Superfície
6.
Sci Technol Adv Mater ; 15(1): 015007, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877649

RESUMO

We report the surface functionalization of graphene films grown by chemical vapor deposition and fabrication of a hybrid material combining multi-walled carbon nanotubes and graphene (CNT-G). Amine-terminated self-assembled monolayers were prepared on graphene by the UV-modification of oxidized groups introduced onto the film surface. Amine-termination led to effective interaction with functionalized CNTs to assemble a CNT-G hybrid through covalent bonding. Characterization clearly showed no defects of the graphene film after the immobilization reaction with CNT. In addition, the hybrid graphene material revealed a distinctive CNT-G structure and p-n type electrical properties. The introduction of functional groups on the graphene film surface and fabrication of CNT-G hybrids with the present technique could provide an efficient, novel route to device fabrication.

7.
J Nanosci Nanotechnol ; 13(7): 4587-92, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23901478

RESUMO

Multi-walled carbon nanotubes (MWCNTs) were grown using iron oxide nanoclusters (Nc) assisted by self-assembled monolayer (SAM) on substrate. The amine-terminated SAM fabricated on silicon substrate (APTMS/SI) was carried out by UV-treatment and immersed into the FeCI3/HCI aqueous solution. Then, Nc were immobilized onto oxidized SAM silicon substrate (SAMs/Si) through electrostatic interaction between cationic Nc and anionic SAMs/Si. The characterization results clearly show that the well-graphitized MWCNTs were synthesized by using functionalized silicon substrate (Nc/SAMs/Si) as a template having appropriate density of catalyst. These consequences show that SAM containing template is important to achieve the effective layer of catalyst to synthesize MWCNTs in chemical vapor deposition (CVD).


Assuntos
Cristalização/métodos , Compostos Férricos/química , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Silício/química , Catálise , Desenho de Equipamento , Análise de Falha de Equipamento , Substâncias Macromoleculares/química , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
8.
J Nanosci Nanotechnol ; 13(10): 6730-4, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24245135

RESUMO

The gapless semimetallic nature of graphene-based nanoelectronics is a major hurdle for the advancement of graphene-based field-effect transistors. Here graphene-carbon nanotubes hybrid nanostructures (Gr-CNTs HNSs) were formed by synthesizing single-walled carbon nanotubes (SWCNTs) with a bandgap on monolayer graphene by thermal chemical vapor deposition. We systematically established optimum conditions for the synthesis of Gr-CNTs HNSs by adjusting catalytic layer formation. The structural features of Gr-CNTs HNSs were investigated by scanning electron icroscopy and Raman spectroscopy. The surface morphologies and chemical states of the catlytic films used to optimize Gr-CNTs HNSs synthesis were explored by atomic force microscopy and X-ray photoelectron spectroscopy. In this process, graphene played a role as a barrier to prevent Fe nanoparticles from interdiffusing into Al2O3 layer. Based on these studies, we determined the catalytic structure (Fe/Graphene/Al2O3/SiO2) optimal for growing high-density SWCNTs on monolayer graphene. Electrical transport measurements revealed that Gr-CNTs HNSs exhibited p-type semiconducting behavior with combined properties of graphene and CNTs.

9.
J Nanosci Nanotechnol ; 11(7): 6341-4, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121712

RESUMO

A field emission electron source was fabricated on a Si substrate using Ag-Cu alloy (ACa) and carbon nanotubes (CNTs). The ACa was adopted as a binder material due to its excellent electrical conductivity, oxidation stability, and suitable melting point (783 degrees C). The surface morphology of the ACa-film was improved by introducing an Nb layer as an adhesion layer between the ACa-film and the Si substrate. The ACa-film thickness was varied from 100 to 500 nm. The spray method was employed to deposit a CNT film on the ACa/Nb/Si substrate for large area fabrication. After annealing the substrate at 700 degrees C for 10 min, the CNT film was tightly welded on the ACa-films, and the CNT-emitters fabricated on the 400-nm-thick ACa-film exhibited high current density and stability with a low turn-on voltage. It is worth noting that ACa could be applied to the glass substrate because the CNT-emitters fabricated at 500 degrees C exhibited good field emission characteristics.

10.
ACS Appl Mater Interfaces ; 12(42): 47802-47810, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32985173

RESUMO

To gain the target functionality of graphene for gas detection, nonfocused and large-scale compatible MeV electron beam irradiation on graphene with Ag patterns is innovatively adopted in air for chemical patterning of graphene. This strategy allows the metal-assisted site-specific oxidation of graphene to realize monolithically integrated graphene-chemically patterned graphene (CPG)-graphene homojunction-based gas sensors. The size-tunable CPG patterns can be mediated by regulating the size of Ag prepatterns. The impacts of highly energetic electron irradiation (HEEI) on graphene are summarized as follows: (i) the selective p-type doping and the defect generation of graphene by the HEEI-induced oxidation, (ii) the resistance of the homojunction devices manipulated by the HEEI dose, (iii) the band gap opening of graphene as well as the lowering of the Fermi level, (iv) the work function values for pristine graphene and CPG corresponding to 4.14 and 4.88 eV, respectively, and (v) graphene-CPG-graphene homojunction for NO2 gas, revealing an 839% enhanced gas response compared with that of the pristine graphene-based gas sensor.

11.
RSC Adv ; 9(34): 19707-19711, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35519368

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), have recently attracted attention for their applicability as building blocks for fabricating advanced functional materials. In this study, a high quality hybrid material based on 2D TMD nanosheets and ZnO nanopatches was demonstrated. An organic promoter layer was employed for the large-scale growth of the TMD sheet, and atomic layer deposition (ALD) was utilized for the growth of ZnO nanopatches. Photodetectors based on 2D TMD nanosheets and ZnO nanopatches were successfully fabricated and investigated, which showed a high photoresponsivity of 2.7 A/W. Our novel approach is a promising and effective method for the fabrication of photodetectors with a new structure for application in TMD-based transparent and flexible optoelectronic devices.

12.
ACS Appl Mater Interfaces ; 11(18): 16830-16837, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30983321

RESUMO

Here, we present a new approach to dual-channel gas sensors on the basis of a role-allocated graphene/ZnO heterostructure, formed by the complementary hybridization of graphene and a ZnO thin film. The method enables cyclic and reproducible gas response as well as high gas response. The role allocation of graphene and ZnO was verified by studying the electrical transport properties of the heterostructure. The results indicated that the ZnO top layer and graphene bottom layer act as a gas adsorption layer and a carrier conducting layer, respectively. The charge interactions of the heterostructures were systematically explored by monitoring changes in transfer characteristics at room temperature and elevated temperature ( T = 250 °C) after introducing 20 ppm NO2. These results can be understood in terms of the dual-channel effect of the graphene/ZnO heterostructures. Remarkably, an abrupt and reliable gas response under periodic NO2 gas injection was unambiguously achieved by the heterostructure-based gas sensors and as ∼30 times higher than those of a graphene-based gas sensor. These proposed heterostructures represent a fundamental building block of a complementary hybrid gas sensor with highly sensitive and reproducible gas response.

13.
J Am Chem Soc ; 130(4): 1362-6, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18179214

RESUMO

Graphite oxide (GO) samples were prepared by a simplified Brodie method. Hydroxyl, epoxide, carboxyl, and some alkyl functional groups are present in the GO, as identified by solid-state 13C NMR, Fourier-transform infrared spectroscopy, and X-ray photoemission spectroscopy. Starting with pyrolytic graphite (interlayer separation 3.36 A), the average interlayer distance after 1 h of reaction, as determined by X-ray diffraction, increased to 5.62 A and then increased with further oxidation to 7.37 A after 24 h. A smaller signal in 13C CPMAS NMR compared to that in 13C NMR suggests that carboxyl and alkyl groups are at the edges of the flakes of graphite oxide. Other aspects of the chemical bonding were assessed from the NMR and XPS data and are discussed. AB stacking of the layers in the GO was inferred from an electron diffraction study. The elemental composition of GO prepared using this simplified Brodie method is further discussed.

14.
RSC Adv ; 8(22): 11991-11996, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35539367

RESUMO

Highly sensitive and wearable chemical sensors for the detection of toxic gas molecules are given significant attention for a variety of applications in human health care and environmental safety. Herein, we demonstrated fiber-type gas sensors based on graphene oxide functionalized with organic molecules such as heptafluorobutylamine (HFBA), 1-(2-methoxyphenyl)piperazine (MPP), and 4-(2-keto-1-benzimidazolinyl)piperidine (KBIP) by assembling functionalized graphene oxide (FGO) on a single yarn fabric. These gas sensors of FGO on yarn exhibited extraordinarily higher sensitivity upon exposure to gas molecules than chemically reduced graphene oxide due to many active functional groups on the GO surface. Furthermore, the mechanical stability and chemical durability of the resulting gas sensors are well-maintained. Based on these results, we expected that our sensors with high sensitive and wearability will provide a good premise for wearable chemical sensors-based multidisciplinary applications.

16.
ACS Appl Mater Interfaces ; 9(50): 43799-43806, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29188715

RESUMO

A novel three-dimensional transition metal dichalcogenide (TMD) structure consisting of seamless hollow nanoflakes on two-dimensional basal layers was synthesized by a one-step chemical vapor deposition method. Here, we demonstrate that the as-grown nanoflakes are formed on an organic promoter layer which served as a positive template and are swollen at the grain boundaries by the bubbling effect. TMD nanosheets with hollow nanoflakes are successfully applied as chemical sensors, and it was found that their gas adsorption property is strongly related to the internal strain gradient resulting from the variation in the lattice parameter. This result is consistent with the theoretical prediction in previous studies. Our chemical vapor deposition-based approach is an efficient way to generate TMD-based nanostructures over a large surface area for various practical applications such as chemical sensors.

17.
ACS Nano ; 11(3): 3207-3212, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28231429

RESUMO

Despite having outstanding electrical properties, graphene is unsuitable for optical devices because of its zero band gap. Here, we report two-dimensional excitonic photoluminescence (PL) from graphene grown on a Cu(111) surface, which shows an unexpected and remarkably sharp strong emission near 3.16 eV (full width at half-maximum ≤3 meV) and multiple emissions around 3.18 eV. As temperature increases, these emissions blue shift, displaying the characteristic negative thermal coefficient of graphene. The observed PL originates from the significantly suppressed dispersion of excited electrons in graphene caused by hybridization of graphene π and Cu d orbitals of the first and second Cu layers at a shifted saddle point 0.525(M+K) of the Brillouin zone. This finding provides a pathway to engineering optoelectronic graphene devices, while maintaining the outstanding electrical properties of graphene.

18.
Adv Mater ; 28(42): 9378-9384, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27601145

RESUMO

An unusually large bandgap modulation of 1.23-2.65 eV in monolayer MoS2 on a SiO2 /Si substrate is found due to the inherent local bending strain induced by the surface roughness of the substrate, reaching the direct-to-indirect bandgap transition. Approximately 80% of the surface area reveals an indirect bandgap, which is confirmed further by the degraded photoluminescence compared to that from suspended MoS2 .

19.
J Phys Chem B ; 109(22): 11095-9, 2005 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16852353

RESUMO

Thin high-quality gallium nitride (GaN) nanowires were synthesized by a catalytic chemical vapor deposition method. The synthesized GaN nanowires with hexagonal single-crystalline structure had thin diameters of 10-50 nm and lengths of tens of micrometers. The thin GaN nanowires revealed UV bands at 3.481 and 3.285 eV in low-temperature PL measurements due to the recombination of donor-bound excitons and donor-acceptor pairs, respectively. The blue shifts of UV bands in the low-temperature PL measurement were observed, indicating quantum confinement effects in the thin GaN nanowires which have smaller diameters than the exciton Bohr radius, 11 nm. For field emission properties of GaN nanowires, the turn-on field of GaN nanowires was 8.5 V/microm and the current density was about 0.2 mA/cm(2) at 17.5 V/microm, which is sufficient for the applications of field emission displays and vacuum microelectronic devices. Moreover, the GaN nanowires indicated stronger emission stability compared with carbon nanotubes.

20.
J Phys Chem B ; 109(41): 19242-8, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16853485

RESUMO

Coexistence of metallic and semiconducting carbon nanotubes has often been a bottleneck in many applications and much fundamental research. Single-walled carbon nanotubes (SWCNTs) were dissolved in HNO3/H2SO4 mixture to confirm differing reactivity between metallic (m) and semiconducting (s) SWCNTs. With HNO3/H2SO4 treatment, s-SWCNTs remained intact, while m-SWCNTs were completely removed for SWCNTs with small diameters less than 1.1 nm, which was confirmed by resonant Raman and optical absorption spectra. We also showed that nitronium ions (NO2+) dissolved in the HNO3/H2SO4 solution could preferably attack the m-SWCNTs, which was supported by our theoretical calculation. This clear selectivity can be explained by the preferential adsorption of positively charged NO2+ on m-SWCNTs due to more available electron densities at the Fermi level in the m-SWCNTs. We report for the first time a selective removal of small-diameter m-SWCNTs by using HNO3/H2SO4 solution, which presented a striking contrast to the diameter-selective removal of SWCNTs by oxidative etching reported previously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA