Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 135(4): 1167-76, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23294028

RESUMO

Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the Li(+) transfer across the electrode/electrolyte interface and lowers the cycle life of a battery cell. Moreover, formation of a passivation layer on the anode robs Li from the cathode irreversibly on an initial charge, further lowering the reversible Δt. These problems plus the cost of quality control of manufacturing plague development of Li-ion rechargeable batteries that can compete with the internal combustion engine for powering electric cars and that can provide the needed low-cost storage of electrical energy generated by renewable wind and/or solar energy. Chemists are contributing to incremental improvements of the conventional strategy by investigating and controlling electrode passivation layers, improving the rate of Li(+) transfer across electrode/electrolyte interfaces, identifying electrolytes with larger windows while retaining a Li(+) conductivity σ(Li) > 10(-3) S cm(-1), synthesizing electrode morphologies that reduce the size of the active particles while pinning them on current collectors of large surface area accessible by the electrolyte, lowering the cost of cell fabrication, designing displacement-reaction anodes of higher capacity that allow a safe, fast charge, and designing alternative cathode hosts. However, new strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions (e.g. sulfur) by liquid cathodes that may contain flow-through redox molecules, or by catalysts for air cathodes; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively. Opportunities exist for the chemist to bring together oxide and polymer or graphene chemistry in imaginative morphologies.

2.
Inorg Chem ; 48(17): 8271-5, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19655712

RESUMO

Synthesis time using microwave irradiation was varied to elucidate the electrochemical degradation mechanism of LiFePO(4) related to the evolution of Fe(2)P. When the amount of Fe(2)P was above a critical level, LiFePO(4) tended to change into an insulating phase, Li(4)P(2)O(7). The correlation between structural analysis and electrochemical analysis attributed the initial degradation of LiFePO(4) to the low electronic conductivity of Li(4)P(2)O(7), whereas the deficiency of P and O evolved by Li(4)P(2)O(7) resulted in the cyclic degradation of LiFePO(4). This kind of correlation between structure and electrochemical performance in intercalation materials will significantly contribute to an explanation of their degradation mechanism for their application.

3.
J Am Chem Soc ; 130(45): 14930-1, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-18855392

RESUMO

To modify oxide structure and introduce a thin conductive film on Li4Ti5O12, thermal nitridation was adopted for the first time. NH3 decomposes surface Li4Ti5O12 to conductive TiN at high temperature, and surprisingly, it also modifies the surface structure in a way to accommodate the single phase Li insertion and extraction. The electrochemically induced Li4+deltaTi5O12 with a TiN coating layer shows great electrochemical properties at high current densities.

4.
ACS Appl Mater Interfaces ; 9(33): 27688-27696, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28752994

RESUMO

Consider the almost insulator for pure Li3VO4 with a band gap of 3.77 eV, to significantly improve the electrical conductivity, the novel Li3V1-xMoxO4 (x = 0.00, 0.01, 0.02, 0.05, and 0.10) anode materials were prepared successfully by simple sol-gel method. Our calculations show that, by substitute Mo6+ for V5+, the extra electron occupied the V 3p empty orbital and caused the Fermi level shift up into the conduction band, where the Mo-doped Li3VO4 presents electrical conductor. The V/I curve measurements show that, by Mo doping in V site, the electronic conductivity of the Li3VO4 was increased by 5 orders of magnitude. And thence the polarization was obviously reduced. EIS measurement results indicated that by Mo-doping a higher lithium diffusion coefficient can be obtained. The significantly increased electronic conductivity combined the higher lithium diffusion coefficient leads to an obvious improvement in reversible capacity and rate performance for the Mo-doped Li3VO4. The resulting Li3V1-xMoxO4 (x = 0.01) material exhibited the excellent rate capability. At a high rate 5 C, a big discharge capacity of the initial discharge capacity 439 mAh/g can be obtained, which is higher than that of pure Li3VO4 (only 166 mAh/g), and after 100 cycles the mean capacity fade is only 0.06% per cycle.

5.
ACS Nano ; 7(8): 7330-41, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23875909

RESUMO

Two distinctive one-dimensional (1-D) carbon nanofibers (CNFs) encapsulating irregularly and homogeneously segregated SnCo nanoparticles were synthesized via electrospinning of polyvinylpyrrolidone (PVP) and polyacrylonitrile (PAN) polymers containing Sn-Co acetate precursors and subsequent calcination in reducing atmosphere. CNFs synthesized with PVP, which undergoes structural degradation of the polymer during carbonization processes, exhibited irregular segregation of heterogeneous alloy particles composed of SnCo, Co3Sn2, and SnO with a size distribution of 30-100 nm. Large and exposed multiphase SnCo particles in PVP-driven amorphous CNFs (SnCo/PVP-CNFs) kept decomposing liquid electrolyte and were partly detached from CNFs during cycling, leading to a capacity fading at the earlier cycles. The closer study of solid electrolyte interphase (SEI) layers formed on the CNFs reveals that the gradual growth of fiber radius due to continuous increment of SEI layer thickness led to capacity fading. In contrast, SnCo particles in PAN-driven CNFs (SnCo/PAN-CNFs) showed dramatically reduced crystallite sizes (<10 nm) of single phase SnCo nanoparticles which were entirely embedded in dense, semicrystalline, and highly conducting 1-D carbon matrix. The growth of SEI layer was limited and saturated during cycling. As a result, SnCo/PAN-CNFs showed much improved cyclability (97.9% capacity retention) and lower SEI layer thickness (86 nm) after 100 cycles compared to SnCo/PVP-CNFs (capacity retention, 71.9%; SEI layer thickness, 593 nm). This work verifies that the thermal behavior of carbon precursor is highly responsible for the growth mechanism of SEI layer accompanied with particles detachment and cyclability of alloy particle embedded CNFs.

6.
Chem Commun (Camb) ; 48(4): 516-8, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22124307

RESUMO

A carbon-free Li(4)Ti(5)O(12) electrode has shown excellent electrochemical performance without any effort to enhance the electrical conductivity. Partial reduction of Ti(4+) and a metallic Li(7)Ti(5)O(12) phase are suggested to be possible origins of the exceptional behavior.

7.
Dalton Trans ; 41(10): 3053-9, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22282315

RESUMO

Mo doped Li excess transition metal oxides formulated as 0.3Li[Li(0.33)Mn(0.67)]O(2)·0.7Li[Ni(0.5-x)Co(0.2)Mn(0.3-x)Mo(2x)]O(2) were synthesized using the co-precipitation process. The effects of the substitution of Ni and Mn with Mo were investigated for the density of the states, the structure, cycling stability, rate performance and thermal stability by tools such as first principle calculations, synchrotron X-ray diffraction, field-emission SEM, solid state (7)Li MAS nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), elemental mapping by scanning TEM (STEM), inductively coupled plasma atomic emission spectrometry (ICP-AES) and a differential scanning calorimeter (DSC). It was confirmed that high valence Mo(6+) doping of the Li-excess manganese-nickel-cobalt layered oxide in the transition metal enhanced the structural stability and electrochemical performance. This increase was due to strong Mo-O hybridization inducing weak Ni-O hybridization, which may reduce O(2) evolution, and metallic behavior resulting in a diminishing cell resistance.

8.
Chem Commun (Camb) ; 46(23): 4190-2, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20458377

RESUMO

A VO(x)-impregnated oxide cathode for lithium ion batteries exhibits a substantial drop in oxygen evolution during high voltage operation. An electrolyte was found to catalyze the gas evolution, and the VO(x) layer could protect the cathode oxide surface from the electrolyte and stabilize the surface oxide ions during their electrochemical oxidation.

9.
Chem Commun (Camb) ; 46(15): 2572-4, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20449311

RESUMO

When the electrode is specifically designed by impregnation with an electronic and ionic mixed-conductor, improvement in the electrochemical properties was observed. The presence of an active redox center may contribute to the enhancement of the surface electronic/ionic transport properties by enhancing electrical connection and isotropic Li(+) ion transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA