Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Asian Pac J Allergy Immunol ; 41(3): 220-226, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35278062

RESUMO

BACKGROUND: Exposure to particulate matter (PM) has been known to develop asthma in children and the oxidative stress-related mechanisms are suggested. For the development of asthma, not only the exposure dose but also the critical window and the risk modifying factors should be evaluated. OBJECTIVE: We investigated whether prenatal exposure to PM10 increases the risk of childhood asthma and evaluated the modifying factors, such as gender and reactive oxidative stress-related gene. METHODS: A general population-based birth cohort, the Panel Study of Korean Children (PSKC), including 1572 mother-baby dyads was analyzed. Children were defined to have asthma at age 7 when a parent reported physician-diagnosed asthma. Exposure to PM10 during pregnancy was estimated by land-use regression models based on national monitoring system. TaqMan method was used for genotyping nuclear factor, erythroid 2-related factor, NRF2 (rs6726395). A logistic Bayesian distributed lag interaction model (BDLIM) was used to evaluate the associations between prenatal PM10 exposure and childhood asthma by gender and NRF2. RESULTS: Exposure to PM10 during pregnancy was associated with the development of asthma (aOR 1.03, 95% CI 1.001.06). Stratifying by gender and NRF2 genotype, exposure to PM10 during 26-28 weeks gestation increased the risk of childhood asthma, especially in boys with NRF2 GG genotype. CONCLUSIONS: A critical window for PM10 exposure on the development of childhood asthma was during 26-28 weeks of gestation, and this was modified by gender and NRF2 genotype.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Efeitos Tardios da Exposição Pré-Natal , Lactente , Criança , Masculino , Feminino , Gravidez , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Fator 2 Relacionado a NF-E2/genética , Teorema de Bayes , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Asma/etiologia , Asma/genética , Genótipo , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos
2.
Free Radic Biol Med ; 213: 1-10, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38159890

RESUMO

Oxidative stress caused by light and high temperature arises during in vitro maturation (IVM), resulting in low-quality embryos compared with those obtained in vivo. To overcome this problem, we investigated the influence of piperine (PIP) treatment during maturation of porcine oocytes on subsequent embryo development in vitro. Porcine oocytes were cultured in IVM medium supplemented with 0, 50, 100, 200, or 400 µM PIP. After parthenogenetic activation, the blastocyst (BL) formation was significantly higher and the apoptosis rate was significantly lower using 200 µM PIP-treated oocytes (200 PIP). In the 200 PIP group, the level of reactive oxygen species at the metaphase II stage was decreased, accompanied by an increased level of glutathione and increased expression of antioxidant processes (Nrf2, CAT, HO-1, SOD1, and SOD2). Consistently, chromosome misalignment and aberrant spindle organization were alleviated and phosphorylated p44/42 mitogen-activated protein kinase activity was increased in the 200 PIP group. Expression of development-related (CDX2, NANOG, POU5F1, and SOX2), anti-apoptotic (BCL2L1 and BIRC5), and pro-apoptotic (BAK, FAS, and CASP3) processes was altered in the 200 PIP group. Ultimately, embryo development was improved in the 200 PIP group following somatic cell nuclear transfer. These findings suggest that PIP improves the quality of porcine oocytes by reducing oxidative stress, which inevitably arises via IVM. In-depth mechanistic studies of porcine oocytes will improve the efficiencies of assisted reproductive technologies.


Assuntos
Alcaloides , Benzodioxóis , Blastocisto , Técnicas de Maturação in Vitro de Oócitos , Piperidinas , Alcamidas Poli-Insaturadas , Suínos , Animais , Técnicas de Maturação in Vitro de Oócitos/métodos , Blastocisto/metabolismo , Oócitos/metabolismo , Estresse Oxidativo , Desenvolvimento Embrionário , Espécies Reativas de Oxigênio/metabolismo
3.
Theriogenology ; 215: 214-223, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100993

RESUMO

Ellagic acid (EA) is a natural polyphenol and a free radical scavenger with antioxidant properties. This study investigated the protective effects of EA during in vitro maturation (IVM) of porcine oocytes. To determine the optimal concentration, IVM medium was supplemented with various concentrations of EA. Treatment with 10 µM EA (10 EA) resulted in the highest cleavage rate, blastocyst formation rate, and total cell number per blastocyst and the lowest percentage of apoptotic cell in parthenogenetic blastocysts. In the 10 EA group, abnormal spindle and chromosome misalignment were rescued and the ratio of phosphorylated p44/42 to total p44/42 was increased. Furthermore, the reactive oxygen species and glutathione levels were significantly decreased and increased, respectively, and antioxidant genes (Nrf2, HO-1, CAT, and SOD1) were significantly upregulated in the 10 EA group. mRNA expression of developmental-related (CDX2, POU5F1, and SOX2) and anti-apoptotic (BCL2L1) genes was significantly upregulated in the 10 EA group, while mRNA expression of pro-apoptotic genes (BAK, FAS, and CASP3) was significantly downregulated. Ultimately, following somatic cell nuclear transfer, the blastocyst formation rate was significantly increased and the percentage of apoptotic cell in blastocysts was significantly decreased in the 10 EA group. In conclusion, addition of 10 EA to IVM medium improved oocyte maturation and the subsequent embryo development capacity through antioxidant mechanisms. These findings suggest that EA can enhance the efficiencies of assisted reproductive technologies.


Assuntos
Antioxidantes , Ácido Elágico , Suínos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ácido Elágico/farmacologia , Ácido Elágico/metabolismo , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/fisiologia , Partenogênese , Desenvolvimento Embrionário , Blastocisto/fisiologia , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro/metabolismo
4.
Mol Reprod Dev ; 80(12): 1035-47, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24150974

RESUMO

Human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) secrete bioactive materials that are beneficial for tissue repair and regeneration. In this study, we characterized human hAT-MSC bioactive material (hAT-MSC-BM), and examined the effect of hAT-MSC-BM on porcine embryo development. hAT-MSC-BM was enriched with several growth factors and cytokines, including fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA), and interleukin 6 (IL6). Among the various concentrations and days of treatment tested, 10% hAT-MSC-BM treatment beginning on culture Day 4 provided the best environment for the in vitro growth of parthenogenetic porcine embryos. While the addition of 10% fetal bovine serum (FBS) increased the hatching rate and the total cell number of parthenogenetic porcine embryos compared with the control and hAT-MSC culture medium group, the best results were from the group cultured with 10% hAT-MSC-BM. Mitochondrial activity was also higher in the 10% hAT-MSC-BM-treated group. Moreover, the relative mRNA expression levels of development and anti-apoptosis genes were significantly higher in the 10% hAT-MSC-BM-treated group than in control, hAT-MSC culture medium, or 10% FBS groups, whereas the transcript abundance of an apoptosis gene was slightly lower. Treatment with 10% hAT-MSC-BM starting on Day 4 also improved the development rate and the total cell number of in vitro-fertilized embryos. This is the first report on the benefits of hAT-MSC-BM in a porcine embryo in vitro culture system. We conclude that hAT-MSC-BM is a new, alternative supplement that can improve the development of porcine embryos during both parthenogenesis and fertilization in vitro.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Embrião de Mamíferos , Desenvolvimento Embrionário/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Proteínas/farmacologia , Suínos/embriologia , Tecido Adiposo/citologia , Animais , Apoptose/genética , Técnicas de Cultura de Células , Células Cultivadas , Meios de Cultura , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Partenogênese , RNA Mensageiro/biossíntese , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
5.
Animals (Basel) ; 12(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36230376

RESUMO

The technology of successful cryopreservation is a very important factor in research and commercial applications. However, the survival and development of the vitrified-thawed (VT) oocytes are lower than those of non-vitrified-thawed (non-VT) oocytes. This study investigated the effect of the addition of hydroxypropyl cellulose (HPC) to a vitrification solution of bovine oocytes. For the vitrification, bovine metaphase II oocytes were pretreated with a solution containing 10% ethylene glycol supplemented with 0, 10, 50, or 100 µg/mL HPC for 5 min, then exposed to a solution containing 30% ethylene glycol supplemented with 0, 10, 50, or 100 µg/mL HPC for 30 sec, and then directly plunged into liquid nitrogen. Oocytes exposed to 0, 10, 50, and 100 µg/mL HPC were named the 0, 10, 50, and 100 HPC groups, respectively. Samples were thawed via sequential incubation in Dulbecco's phosphate-buffered saline (D-BPS) supplemented with 10% fetal bovine serum and decreasing concentrations of sucrose (1, 0.5, 0.25, and 0.125 M) for 1 min each time. After thawing, VT oocytes were treated at 0.05% hyaluronidase, and cumulus cells were removed by mechanical pipetting. The oocytes were washed with HEPES-buffered Tyrode's medium and incubated in a droplet of previously cultured in vitro maturation medium for 1 h to recover. The survival rate of the oocytes was significantly higher in the 50 HPC group (84.2%) than in the 0 (75.4%), 10 (80.4%), and 100 (75.5%) HPC groups. The reactive oxygen species (ROS) levels of the non-VT and 50 HPC groups were lower than the 0, 10, and 100 HPC groups. The mRNA levels of proapoptotic genes (Bax) were lower in the non-VT, 0, and 50 HPC groups than in the other groups. The mRNA expression levels of antiapoptotic genes (BCl2) was higher in the non-VT than in the other groups. The mRNA level of a stress-related gene (Hsp70) was lower in the 50 HPC than in the other groups. At day 8, the developmental capacity of embryos obtained via parthenogenetic activation (PA) was determined in the non-VT, 0 HPC, and 50 HPC groups. The cleavage rate of the non-VT group was significantly higher, but the blastocyst development rate and total cell number per blastocyst did not significantly differ between the non-VT and 50 HPC groups. The mRNA levels of proapoptotic genes (Bax and Caspase-3) and a stress-related gene (Hsp70) were higher in the 0 HPC group than in the non-VT and 50 HPC groups. In conclusion, supplementation of vitrification solution with HPC improves the survival rate of VT bovine oocytes and the development capacity of embryos derived from these oocytes via PA.

6.
J Plant Physiol ; 268: 153584, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34890847

RESUMO

Down-regulation of leaf N and Rubisco under elevated CO2 (eCO2) are accompanied by increased non-structural carbohydrates (NSC) due to the sink-source imbalance. Here, to investigate whether the canopy position affects the down-regulation of Rubisco, we measured leaf N, NSC and N allocation in two species with different heights at maturity [Fraxinus rhynchophylla (6.8 ± 0.3 m) and Sorbus alnifolia (3.6 ± 0.2 m)] from 2017 to 2019. Since 2009, both species were grown at three different CO2 concentrations in open-top chambers: ambient CO2 (400 ppm; aCO2); ambient CO2 × 1.4 (560 ppm; eCO21.4); and ambient CO2 × 1.8 (720 ppm; eCO21.8). Leaf N per unit mass (Nmass) decreased under eCO2, except under eCO21.8 in S. alnifolia and coincided with increased NSC. NSC increased under eCO2 in F. rhynchophylla, but the increment of NSC was greater in the upper canopy of S. alnifolia. Conversely, Rubisco content per unit area was reduced under eCO2 in S. alnifolia and there was no interaction between CO2 and canopy position. In contrast, the reduction of Rubisco content per unit area was greater in the upper canopy of F. rhynchophylla, with a significant interaction between CO2 and canopy position. Rubisco was negatively correlated with NSC only in the upper canopy of F. rhynchophylla, and at the same NSC, Rubisco was lower under eCO2 than under aCO2. Contrary to Rubisco, chlorophyll increased under eCO2 in both species, although there was no interaction between CO2 and canopy position. Finally, photosynthetic N content (Rubisco + chlorophyll + PSII) was reduced and consistent with down-regulation of Rubisco. Therefore, the observed Nmass reduction under eCO2 was associated with dilution due to NSC accumulation. Moreover, down-regulation of Rubisco under eCO2 was more sensitive to NSC accumulation in the upper canopy. Our findings emphasize the need for the modification of the canopy level model in the context of climate change.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Ribulose-Bifosfato Carboxilase , Árvores , Dióxido de Carbono , Clorofila , Fraxinus , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Sorbus , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
7.
J Plant Physiol ; 265: 153489, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34416600

RESUMO

Down-regulation of photosynthesis under elevated CO2 (eCO2) concentrations could be attributed to the depletion of nitrogen (N) availability after long-term exposure to eCO2 (progressive nitrogen limitation, PNL) or leaf N dilutions due to excessive accumulation of nonstructural carbohydrates. To determine the mechanism underlying this down-regulation, we investigated N availability, photosynthetic characteristics, and N allocation in leaves of Pinus densiflora (shade-intolerant species, evergreen tree), Fraxinus rhynchophylla (intermediate shade-tolerant species, deciduous tree), and Sorbus alnifolia (shade-tolerant species, deciduous tree). The three species were grown under three different CO2 concentrations in open-top chambers, i.e., ambient 400 ppm (aCO2); ambient × 1.4, 560 ppm (eCO21.4); and ambient × 1.8, 720 ppm (eCO21.8), for 11 years. Unlike previous studies that addressed PNL, after 11 years of eCO2 exposure, N availability remained higher under eCO21.8, and chlorophyll and photosynthetic N use efficiency increased under eCO2. In the case of nonstructural carbohydrates, starch and soluble sugar showed significant increases under eCO2. The maximum carboxylation rate, leaf N per mass (Nmass), and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were low under eCO21.8. The ratio of RuBP regeneration to the carboxylation rate as well as that of chlorophyll N to Rubisco N increased with CO2 concentrations. Based on the reduction in Nmass (not in Narea) that was diluted by increase in nonstructural carbohydrate, down-regulation of photosynthesis was found to be caused by the dilution rather than PNL. The greatest increases in chlorophyll under eCO2 were observed in S. alnifolia, which was the most shade-tolerant species. This study could help provide more detailed, mechanistically based processes to explain the down-regulation of photosynthesis by considering two hypotheses together and showed N allocation seems to be flexible against changes in CO2 concentration.


Assuntos
Adaptação Ocular/fisiologia , Dióxido de Carbono/efeitos adversos , Regulação para Baixo/fisiologia , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Fraxinus/fisiologia , Pinus/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Sorbus/fisiologia
8.
Pediatr Pulmonol ; 56(10): 3332-3341, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34357700

RESUMO

BACKGROUND: Bronchiolitis obliterans syndrome (BOS) is a life-threatening respiratory complication of allogeneic hematopoietic stem cell transplantation (HSCT). Although pulmonary function testing is crucial for monitoring BOS, little information exists on the association of these test results with outcomes in children with BOS. OBJECTIVES: The purpose of this study was to determine the correlation between changes in lung function after BOS diagnosis and long-term outcomes. METHODS: A total of 428 children underwent allogeneic HSCT from January 2006 to December 2017 at Asan Medical Center. Twenty-three (5.4%) were diagnosed with BOS after allogeneic HSCT, and their clinical data were reviewed. Twenty-one subjects underwent regular pulmonary function testing for 24 months after BOS diagnosis. RESULTS: Among the 21 children with BOS, 8 died, 5 underwent lung transplantation (TPL), and 15 required oxygen (O2 ) therapy. The FEV1 % predicted (pred), FVC% pred, and FEF25%-75% pred were 37.8 ± 12.7% (mean ± SD), 62.2 ± 16.2%, and 16.4 ± 9.6%, respectively, at the time of BOS diagnosis. Changes in the FEV1 % pred were greater in the death and lung TPL groups (-24.8 ± 22.3%) than in the survival without lung TPL group (5.7 ± 21.8%) and greater in the O2 therapy (-19.4 ± 23.4%) group than in the group without O2 therapy (14.2 ± 20.0%) during the first 3 months after BOS diagnosis. CONCLUSION: The change in FEV1 during the first 3 months after BOS diagnosis correlated with outcomes including survival, lung TPL, and O2 therapy. These results suggest that more active intervention in the first 3 months after BOS diagnosis may be needed to improve prognosis.


Assuntos
Bronquiolite Obliterante , Transplante de Células-Tronco Hematopoéticas , Transplante de Pulmão , Bronquiolite Obliterante/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Pulmão , Estudos Retrospectivos
9.
Tree Physiol ; 39(5): 755-766, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30924868

RESUMO

Tree species vary in how they invest resources to different functions throughout their life histories, and investigating the detailed patterns of ontogenetic changes in key functional traits will aid in predicting forest dynamics and ecosystem processes. In this context, we investigated size-dependent changes in key leaf functional traits and nitrogen (N) allocation trade-offs in black locust (Robinia pseudoacacia L., an N-fixing pioneer species) and giant dogwood (Cornus controversa Hemsl., a mid-successional species), which have different life-history strategies, especially in their light use. We found that the leaf mass per area and leaf carbon concentrations increased linearly with tree size (diameter at breast height, DBH), whereas leaf N concentrations decreased nonlinearly, with U- and hump-shaped patterns in black locust and giant dogwood, respectively. We also discovered large differences in N allocation between the two species. The fraction of leaf N invested in cell walls was much higher in black locust than in giant dogwood, while the opposite was true for the light harvesting N fraction. Furthermore, these fractions were related to DBH to varying degrees: the cell wall N fraction increased with DBH for both species, whereas the light harvesting N fraction of giant dogwood decreased nonlinearly and that of black locust remained constant. Instead, black locust reduced the fraction of leaf N invested in other N pools, resulting in a smaller fraction compared to that of giant dogwood. On the other hand, both species had similar fraction of leaf N invested in ribulose-1,5-bisphosphate carboxylase/oxygenase across tree size. This study indicated that both species increased leaf mechanical toughness through characteristic changes in N allocation trade-offs over the lifetimes of the trees.


Assuntos
Cornus/fisiologia , Nitrogênio/metabolismo , Folhas de Planta/fisiologia , Robinia/fisiologia , Características de História de Vida , República da Coreia
10.
Cell Reprogram ; 19(4): 245-254, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28650694

RESUMO

A time-lapse monitoring system has predictive value for selecting good-quality embryos with the highest implantation potential. Using this new tool, we investigated the developmental potential and developmental kinetics of bovine parthenogenetic (PA) and two types of somatic cell nuclear transfer (NT) embryos. Bovine non-transgenic ear cells (bECs) or transgenic cells (bTGCs) were used as donor cells. The cleavage and blastocyst development rates did not significantly differ among the PA, NT-bEC, and NT-bTGC groups, and first cleavage occurred an average of 19.3 hours (n = 70), 21.6 hours (n = 60), and 21.3 hours (n = 62) after activation, respectively (20.4 hours [n = 192] for all embryos). When embryos were classified into early cleaving (≤20 hours) and late cleaving (>20 hours) groups, the blastocyst formation rate was much higher in the early cleaving groups (PA, 46%; NT-bEC, 50%; NT-bTGC, 39%) than in the late cleaving groups (PA, 18%; NT-bEC, 23%; NT-bTGC, 28%), while the percentage of embryos whose development was blocked between the two- and eight-cell stages was increased in the late cleaving groups. The percentage of embryos classified as early cleaving with a normal morphology was twofold higher in the PA group (20.0%, n = 14) than in the NT-bTGC group (9.7%, n = 6). The timing of each developmental stage varied widely; the timing of first cleavage varied from 7.6 hours in the PA group to 34.5 hours in the NT-bEC group and the timing of expanded/hatching blastocyst appearance varied from 141.6 hours in the PA group to 196.3 hours in the NT-bTGC group, differences of 26.9 and 54.7 hours, respectively (PA>NT-bEC>NT-bTGC). These results demonstrate that time-lapse monitoring provides novel data regarding individual embryo developmental kinetics and helps to predict developmental potential for improved bovine NT embryo selection based on early cleavage (≤20 hours) and normal morphology.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário , Técnicas de Transferência Nuclear , Partenogênese , Animais , Blastocisto/citologia , Bovinos , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA