Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Cell Biol ; 22(23): 8366-74, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12417737

RESUMO

Methylation of histone H3 has been linked to the assembly of higher-order chromatin structures. Very recently, several examples, including the Schizosaccharomyces pombe mating-type region, chicken beta-globin locus, and inactive X-chromosome, revealed that H3-Lys9-methyl (Me) is associated with silent chromatin while H3-Lys4-Me is prominent in active chromatin. Surprisingly, it was shown that homologs of Drosophila Su(var)3-9 specifically methylate the Lys9 residue of histone H3. Here, to identify putative enzymes responsible for destabilization of heterochromatin, we screened genes whose overexpressions disrupt silencing at the silent mat3 locus in fission yeast. Interestingly, we identified two genes, rhp6(+) and ubcX(+) (ubiquitin-conjugating enzyme participating in silencing), both of which encode ubiquitin-conjugating enzymes. Their overexpression disrupted silencing at centromeres and telomeres as well as at mat3. Additionally, the overexpression interfered with centromeric function, as confirmed by elevated minichromosome loss and antimicrotubule drug sensitivity. On the contrary, deletion of rhp6(+) or ubcX(+) enhanced silencing at all heterochromatic regions tested, indicating that they are negative regulators of silencing. More importantly, chromatin immunoprecipitation showed that their overexpression alleviated the level of H3-Lys9-Me while enhancing the level of H3-Lys4-Me at the silent regions. On the contrary, their deletions enhanced the level of H3-Lys9-Me while alleviating that of H3-Lys4-Me. Taken together, the data suggest that two ubiquitin-conjugating enzymes, Rhp6 and UbcX, affect methylation of histone H3 at silent chromatin, which then reconfigures silencing.


Assuntos
Proteínas de Drosophila , Heterocromatina/metabolismo , Ligases/metabolismo , Schizosaccharomyces/genética , Enzimas de Conjugação de Ubiquitina , Ubiquitina/metabolismo , Sequência de Aminoácidos , Centrômero/metabolismo , Inativação Gênica , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Heterocromatina/genética , Histonas/metabolismo , Metilação , Dados de Sequência Molecular , Mutação , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alinhamento de Sequência
2.
Mol Cell Biol ; 24(8): 3430-44, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15060163

RESUMO

Liver X receptors (LXRs) are nuclear hormone receptors that regulate cholesterol and fatty acid metabolism in liver tissue and in macrophages. Although LXR activation enhances lipogenesis, it is not well understood whether LXRs are involved in adipocyte differentiation. Here, we show that LXR activation stimulated the execution of adipogenesis, as determined by lipid droplet accumulation and adipocyte-specific gene expression in vivo and in vitro. In adipocytes, LXR activation with T0901317 primarily enhanced the expression of lipogenic genes such as the ADD1/SREBP1c and FAS genes and substantially increased the expression of the adipocyte-specific genes encoding PPARgamma (peroxisome proliferator-activated receptor gamma) and aP2. Administration of the LXR agonist T0901317 to lean mice promoted the expression of most lipogenic and adipogenic genes in fat and liver tissues. It is of interest that the PPARgamma gene is a novel target gene of LXR, since the PPARgamma promoter contains the conserved binding site of LXR and was transactivated by the expression of LXRalpha. Moreover, activated LXRalpha exhibited an increase of DNA binding to its target gene promoters, such as ADD1/SREBP1c and PPARgamma, which appeared to be closely associated with hyperacetylation of histone H3 in the promoter regions of those genes. Furthermore, the suppression of LXRalpha by small interfering RNA attenuated adipocyte differentiation. Taken together, these results suggest that LXR plays a role in the execution of adipocyte differentiation by regulation of lipogenesis and adipocyte-specific gene expression.


Assuntos
Adipócitos/fisiologia , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Adipócitos/citologia , Tecido Adiposo/citologia , Tecido Adiposo/fisiologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Humanos , Fígado/metabolismo , Receptores X do Fígado , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Nucleares Órfãos , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Proteína de Ligação a Elemento Regulador de Esterol 1 , Células Estromais/citologia , Células Estromais/fisiologia , Fatores de Transcrição/genética
3.
Nucleic Acids Res ; 33(9): 2868-79, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15908586

RESUMO

Centromeres of fission yeast are arranged with a central core DNA sequence flanked by repeated sequences. The centromere-associated histone H3 variant Cnp1 (SpCENP-A) binds exclusively to central core DNA, while the heterochromatin proteins and cohesins bind the surrounding outer repeats. CHD (chromo-helicase/ATPase DNA binding) chromatin remodeling factors were recently shown to affect chromatin assembly in vitro. Here, we report that the CHD protein Hrp1 plays a key role at fission yeast centromeres. The hrp1Delta mutant disrupts silencing of the outer repeats and central core regions of the centromere and displays chromosome segregation defects characteristic for dysfunction of both regions. Importantly, Hrp1 is required to maintain high levels of Cnp1 and low levels of histone H3 and H4 acetylation at the central core region. Hrp1 interacts directly with the centromere in early S-phase when centromeres are replicated, suggesting that Hrp1 plays a direct role in chromatin assembly during DNA replication.


Assuntos
Adenosina Trifosfatases/fisiologia , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Acetilação , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/genética , Ciclo Celular , Centrômero/química , Centrômero/genética , Montagem e Desmontagem da Cromatina , Segregação de Cromossomos , DNA Helicases/análise , DNA Helicases/genética , Inativação Gênica , Histonas/metabolismo , Mutação , Schizosaccharomyces/metabolismo
4.
Nucleic Acids Res ; 30(18): 4022-31, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12235386

RESUMO

The deletion of the top3(+) gene leads to defective nuclear division and lethality in Schizosaccharo myces pombe. This lethality is suppressed by concomitant loss of rqh1(+), the RecQ helicase. Despite extensive investigation, topoisomerase III function and its relationship with RecQ helicase remain poorly understood. We generated top3 temperature-sensitive (top3-ts) mutants and found these to be defective in nuclear division and cytokinesis and to be sensitive to DNA-damaging agents. A temperature shift of top3-ts cells to 37 degrees C, or treatment with hydroxyurea at the permissive temperature, caused an increase in 'cut' (cell untimely torn) cells and elevated rates of minichromosome loss. The viability of top3-ts cells was decreased by a temperature shift during S-phase when compared with a similar treatment in other cell cycle stages. Furthermore, the top3-ts mutant was not sensitive to M-phase specific drugs. These results indicate that topoisomerase III may play an important role in DNA metabolism during DNA replication to ensure proper chromosome segregation. Our data are consistent with Top3 acting downstream of Rqh1 to process the toxic DNA structure produced by Rqh1.


Assuntos
Segregação de Cromossomos/genética , Replicação do DNA/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Divisão Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/genética , Hidroxiureia/farmacologia , Mutação , Plasmídeos/genética , Fase S/efeitos dos fármacos , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/crescimento & desenvolvimento , Temperatura
5.
Nucleic Acids Res ; 30(3): 643-8, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11809875

RESUMO

Rph1, a Cys2-His2 zinc finger protein, binds to an upstream repressing sequence of the photolyase gene PHR1, and represses its transcription in response to DNA damage in Saccharomyces cerevisiae. In this report, we have demonstrated that the phosphorylation of Rph1 protein was increased in response to DNA damage. The DNA damage-induced phosphorylation of Rph1 was missing in most damage checkpoint mutants including rad9, rad17, mec1 and rad53. These results indicate that Rph1 phosphorylation is under the control of the Mec1-Rad53 damage checkpoint pathway. Rph1 phosphorylation required the kinase activity of Rad53 since it was significantly decreased in rad53 checkpoint mutant. Furthermore, loss of other kinases including Dun1, Tel1 and Chk1, which function downstream of Mec1, did not affect the Rph1 phosphorylation. This contrasts with the derepression of Crt1-regulated genes, which requires both Rad53 and Dun1 protein kinases. These results imply that post-translational modification of Rph1 repressor is regulated by a potentially novel damage checkpoint pathway that is distinct from the RAD53-DUN1-CRT1 cascade implicated in the DNA damage-dependent transcription of ribonucleotide reductase genes.


Assuntos
Apoenzimas/antagonistas & inibidores , Proteínas de Ciclo Celular , Dano ao DNA , Desoxirribodipirimidina Fotoliase/antagonistas & inibidores , Proteínas Fúngicas , Glicoproteínas de Membrana , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae , Apoenzimas/metabolismo , Western Blotting , Ciclo Celular , Quinase do Ponto de Checagem 2 , Desoxirribodipirimidina Fotoliase/metabolismo , Genes Fúngicos/genética , Histona Desmetilases , Mutação/genética , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/imunologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/imunologia , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nucleic Acids Res ; 30(5): 1145-53, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11861905

RESUMO

rrg1+(rapid response to glucose) has been isolated previously as a UV-inducible gene in Schizosaccharomyces pombe, designated as uvi22+. However, it was revealed that the transcript level of this gene was regulated by glucose, not by DNA-damaging agents. Glucose depletion led to a rapid decrease in the level of rrg1+ mRNA, by approximately 50% within 30 min. This effect was readily reversed upon re-introduction of glucose within 1 h. High concentrations (4 and 8%) of glucose showed similar effects on increasing the rrg1+ mRNA level compared with 2% glucose, while a low concentration (0.1%) was not effective in raising the rrg1+ mRNA level. In addition, sucrose and fructose could increase rrg1+ mRNA level. Interestingly, the rapid decline in mRNA level seen upon glucose deprivation resulted from precipitous reduction of mRNA half-life. Serial and internal deletions within the 3'-flanking region of rrg1+ revealed that a 210-nt region downstream of the distal poly(A) site was critical for glucose-regulated expression. Moreover, this downstream region participated in 3'-end formation of mRNA. Taken together, this is the first report on glucose-inducible expression regulated post-transcriptionally by control of mRNA stability in S.pombe.


Assuntos
Glucose/farmacologia , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Região 3'-Flanqueadora , Cicloeximida/farmacologia , Poli A/genética , Poliadenilação , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Nucleico , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Ativação Transcricional
7.
Nucleic Acids Res ; 31(24): 7165-74, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14654692

RESUMO

Adipocyte determination and differentiation dependent factor 1 (ADD1)/sterol regulatory element binding protein isoform (SREBP1c) is a key transcription factor in fatty acid metabolism and insulin- dependent gene expression. Although its transcriptional and post-translational regulation has been extensively studied, its regulation by interacting proteins is not well understood. To identify cellular proteins that associate with ADD1/SREBP1c, we employed the yeast two-hybrid system with an adipocyte cDNA library. Using the N-terminal domain of ADD1/SREBP1c as bait, we identified Twist2 (also known as Dermo-1), a basic helix-loop-helix (bHLH) protein, as a novel ADD1/SREBP1c interacting protein. Over-expression of Twist2 strongly repressed the transcriptional activity of ADD1/SREBP1c, primarily by reducing its binding to target sequences. Inhibition of histone deacetylase (HDAC) activity with HDAC inhibitors relieved this repression. Our data suggest that physical interaction between Twist2 and ADD1/SREBP1c attenuates transcriptional activation by ADD1/SREBP1c by inhibiting its binding to DNA, and that this inhibition is at least partly dependent on chromatin modification by HDACs.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Proteínas Estimuladoras de Ligação a CCAAT/antagonistas & inibidores , Proteínas Estimuladoras de Ligação a CCAAT/genética , Linhagem Celular , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Sequências Hélice-Alça-Hélice , Inibidores de Histona Desacetilases , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteína de Ligação a Elemento Regulador de Esterol 1 , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ativação Transcricional/efeitos dos fármacos , Proteína 1 Relacionada a Twist
8.
Mol Endocrinol ; 17(8): 1522-33, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12730330

RESUMO

Recent studies with murine models propose that resistin would be a possible mediator to link between obesity and insulin resistance. Although it has been reported that resistin is highly expressed and secreted by adipocytes, transcription factors that are involved in resistin gene expression have not been well characterized. To investigate the molecular mechanisms of resistin gene expression, we cloned and characterized the human resistin promoter. Sequence analysis of the resistin promoter revealed several putative binding sites for adipogenic transcription factors including adipocyte determination- and differentiation-dependent factor 1 (ADD1)/sterol regulatory element binding protein 1c (SREBP1c) and CCAAT enhancer binding protein-alpha (C/EBP alpha). EMSA and chromatin immunoprecipitation assays demonstrated that ADD1/SREBP1c binds to the human resistin promoter in vitro and in vivo. Expression of ADD1/SREBP1c transactivated the luciferase reporter gene activity, the promoter region of which contains a human resistin promoter in a sterol regulatory element (SRE)-dependent manner. Furthermore, ectopic expression of ADD1/SREBP1c by adenovirus significantly increased the expression of resistin mRNA in adipocytes. Human resistin promoter was also activated by C/EBP alpha expression, although ectopic expression of both transcription factors did not show any synergistic effects on the activation of resistin promoter. Together, these data suggest that ADD1/SREBP1c and C/EBP alpha may play discrete roles in the regulation of the resistin gene expression.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hormônios Ectópicos/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Adipócitos/citologia , Adipócitos/fisiologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/fisiologia , Motivos de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Células Cultivadas , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Jejum , Regulação da Expressão Gênica , Hormônios Ectópicos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Estado Nutricional , Resistina , Proteína de Ligação a Elemento Regulador de Esterol 1 , Fatores de Transcrição/genética , Ativação Transcricional
9.
Exp Mol Med ; 34(4): 285-93, 2002 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-12515394

RESUMO

Chimeric genes coding for prepro region of yeast alpha-factor and anglerfish SRIF were expressed in rat GH3 cells to determine whether yeast signals could regulate hormone processing in mammalian cells. We report that nascent hybrid polypeptides were efficiently targeted to ER, where cleavage of signal peptides and core glycosylation occurred, and were localized mainly in Golgi. These data indicate that prepro region of yeast alpha-factor functions in sorting molecules to secretory pathway in mammalian cells. A hybrid construct with a mutated signal peptide underwent similar ER translocation, whereas such a mutation resulted in defective translocation in yeast (Cheong et al., 1997). This difference may be due to the differences in ER translocation between yeast and mammalian cells, i.e., posttranslational versus cotranslational translocation. Processing and secretion of metabolically labeled hybrid propeptides to mature SRIF peptides were assessed by HPLC. When pulse-labeled cells were chased for up to 2 h, intracellular propeptides disappeared with a half-life of approximately 25 min, showing that approximately 68% of initially synthesized propeptides were secreted constitutively. About 22% of SRIF-related products were proteolytically processed to mature SRIF, of which 38.7% were stored intracellularly with a half-life of approximately 2 h. In addition, immunocytochemical localization showed that a small proportion of SRIF molecules accumulated in secretory vesicles. All these results suggest that yeast prepropeptide could direct hybrid precursors to translocate into ER lumen and transit through secretory pathway to the distal elements of Golgi compartment, but could process and target it less efficiently to downstream in rat endocrine cells.


Assuntos
Peptídeos/metabolismo , Adeno-Hipófise/citologia , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Cinética , Fator de Acasalamento , Peptídeos/genética , Precursores de Proteínas/biossíntese , Precursores de Proteínas/genética , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Retroviridae/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Secretórias/metabolismo , Somatostatina/biossíntese , Somatostatina/genética , Somatostatina/metabolismo
10.
Mol Cells ; 14(3): 437-43, 2002 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-12521309

RESUMO

Glucose-inducible gene expression is a fundamental cellular response for optimal cell growth, but identities of glucose-inducible genes and its regulatory mechanism remain largely elusive in Schizosaccharomyces pombe. Here we report that ura4+, encoding orotidine monophosphate decarboxylase (OMPdecase), shows glucose-inducible expression regulated at post-transcriptional level. The ura4+ mRNA level was rapidly decreased by approximately 50% within 20 min after glucose depletion and it was readily recovered upon glucose-readdition within 1 h. Glucose at above 2% similarly raised the transcript level of ura4+, while low concentration (0.1%) was not effective. Interestingly, control of mRNA turnover would be the main regulatory step of the glucose-dependent expression of ura4+. Moreover, stress-activated MAPK (SAPK) pathway was partially responsible for the glucose-regulated expression of ura4+ and rrg1+, another example of glucose-dependent mRNA stability control in S. pombe. These results suggest that the SAPK pathway might participate in the glucose-dependent regulation of ura4+ and rrg1+ mRNA stabilities.


Assuntos
Proteínas Fúngicas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/efeitos dos fármacos , Northern Blotting , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Nucleico , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
11.
Mol Cells ; 14(2): 312-7, 2002 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-12442907

RESUMO

A glucose-inducible gene in S. pombe is rrg1+. Its mRNA level is rapidly decreased and increased by glucose-depletion and readdition, respectively. The previous study revealed that the rrg1+ expression was regulated by glucose-dependent mRNA stability control. To understand the significance of the glucose-dependent expression of rrg1+, the cellular function of rrg1+ was explored. Deletion of the rrg1+ gene from the haploid chromosome of S. pombe cells did not lead to cell lethality but brought about cell size reduction, which was accompanied by fast cell proliferation. In accordance with this result, the overexpression of the Rrgl protein under the control of the nmt1 promoter produced elongated cells of G2 delay, and consequently resulted in the slowing-down of cell proliferation. In addition, the rrg1+ mRNA level showed cell-cycle dependent changes, peaking at G2/M. These results demonstrate that Rrg1 might be involved in the negative regulation of cell proliferation and G2/M progression for cell size control.


Assuntos
Fase G2/fisiologia , Glucose/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Regulação para Baixo , Fase G2/genética
12.
Mol Cells ; 14(3): 425-30, 2002 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-12521307

RESUMO

uvi31+ is a sequence homolog of Escherichia coli bolA gene in Schizosaccharomyces pombe, identified as a UV-inducible gene. Here, the cellular function of uvi31+ was investigated by null mutant analysis. Deletion of uvi31+ led to a delayed germination of spore and defects in subsequent cell division. However, the uvi31 mutant cell proliferated faster with smaller cell size than the wild-type cell during vegetative growth. In addition, the uvi31 mutant was sensitive to UV-light. It showed a normal cell cycle delay after UV-irradiation but displayed aberrant septum formation and defective cytokinesis when released from the UV damage checkpoint. These results suggest that uvi31+ may be involved in control of cell division, especially during the resumption from cell cycle arrest.


Assuntos
Divisão Celular/fisiologia , Genes Fúngicos/genética , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/fisiologia , Esporos Fúngicos/genética , Ciclo Celular , Divisão Celular/efeitos da radiação , Regulação Fúngica da Expressão Gênica , Mitose/genética , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Schizosaccharomyces/efeitos da radiação , Proteínas de Schizosaccharomyces pombe/química , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta
13.
Mol Cells ; 13(1): 148-53, 2002 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-11911467

RESUMO

Endocrine disrupters refer to environmental or chemical compounds, which interfere with the endocrine system of organisms. In this study, our aim was to develop a screening method to detect xenoestrogen (an endocrine disrupter that is commonly encountered in our daily life) by using fission yeast Schizosaccharomyces pombe. Although the yeast (the simplest eukaryotic cell) has no endocrine system, estrogen receptors that are created to express in the yeast cell can be activated by estrogen in a similar manner to mammalian cells. First, in order to express the human estrogen receptor (hER) in the yeast cell, we constructed a yeast expression vector that contained hER (pREP42MHN-hER). In the yeast cells that are transformed with the pREP42MHN-hER vector, estrogen receptors could recognize xenoestrogen, which allowed the determination of the presence of xenoestrogen in any given sample. Furthermore, we constructed a yeast strain that contained an estrogen responsive element (ERE) that fused with the Escherichia coli LacZ gene (pERE-LacZ) as a reporter for binding of xenoestrogen with the estrogen receptor. Since this vector system allows determination of the presence and level of xenoestrogen with simple procedures, it is expected that they can serve as an efficient assay system to detect xenoestrogen.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Estrogênios não Esteroides/farmacologia , Schizosaccharomyces/efeitos dos fármacos , Fusão Gênica Artificial , Sequência de Bases , DNA Recombinante/genética , Estrogênios não Esteroides/metabolismo , Genes Bacterianos , Genes Reporter , Vetores Genéticos , Humanos , Técnicas In Vitro , Óperon Lac , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
14.
Mol Cells ; 14(1): 68-74, 2002 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-12243355

RESUMO

To investigate the role of protein kinase A (PKA) (EC 2.7.1.37) in myogenesis, PKA activity was closely monitored during the differentiation of L6 rat skeletal myoblasts. As the differentiation proceeded, total PKA activity increased about 2-3 fold, and the protein levels of PKA RIalpha and Calpha subunits increased about 3-4 fold. We then looked at the effect of the specific inhibitor for PKA, N-[2-(p-bromocinnamy-lamino)-ethyl]-5-isoquinoline-sulfonamide (H89), on the differentiation of L6 myoblasts. H89 completely blocked the myotube formation and abolished the up-regulation of RIalpha and Ca. This inhibitory effect of H89 was dose-dependent and could be reversed upon removal of H89 from the culture medium. Furthermore, we demonstrated that specific inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin, and LY294002 blocked the myotube formation and abolished the increase of PKA activity, which normally accompanied the differentiation of myoblasts. These results suggest that type I PKA may play a functional role(s) in the differentiation of myoblast as a putative downstream effector of the PI3K signaling pathway.


Assuntos
Diferenciação Celular/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mioblastos Esqueléticos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sulfonamidas , Androstadienos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Cromonas/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Isoquinolinas/farmacologia , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Wortmanina
15.
Mol Cells ; 13(2): 327-33, 2002 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-12018857

RESUMO

Taz1p is the fission yeast orthologue of human TRF2, a telomeric repeat-binding protein. Delta(taz1) mutants are defective in telomeric silencing, telomere length control, and meiotic recombination events. A recent report demonstrated that the human Rap1p homolog (hRap1) is recruited to telomere by interaction with TRF2, arguing that the telomere control mechanism of higher eukaryotes is distinct from that of the budding yeast. Taz1p showed a significant similarity to human TRF2, but not with the budding yeast Rap1p (scRap1p). This suggests that Taz1p and TRF2 share common features in telomere regulation. To assess the roles of Taz1p in telomere-related functions in detail, we attempted to identify a protein(s) that interacts with Taz1p by using two-hybrid screening. Interestingly, the sequence analysis of a positive clone revealed a perfect match with a Rap1 homolog in S. pombe (spRap1), which showed a significant homology with scRap1p and hRap1p. Here we show that the spRap1 deficiency in haploid cells is viable, which results in increased telomere length regulation, disruption of telomere silencing, and aberrant meiosis (like the delta(taz1) mutant). This suggests that spRap1p might be recruited to the telomere by Taz1p and play crucial roles in telomere function. Interestingly, the delta(rap1) mutants in fission yeast are defective only for telomere silencing. Therefore, the role of spRap1p may be distinct from that of scRap1p, which is involved in the silencing at both the telomere and mating type locus. Our data, therefore, suggest that the regulation mechanisms of telomere in fission yeast resemble that of higher eukaryotic cells rather than the budding yeast.


Assuntos
Inativação Gênica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Sequência de Bases , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Dados de Sequência Molecular , Schizosaccharomyces/química , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ligação a Telômeros/genética , Técnicas do Sistema de Duplo-Híbrido
16.
Mol Cell ; 19(6): 817-28, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-16168376

RESUMO

Several studies have suggested that SUMO may participate in the regulation of heterochromatin, but direct evidence is lacking. Here, we present a direct link between sumoylation and heterochromatin stability. SUMO deletion impaired silencing at heterochromatic regions and induced histone H3 Lys4 methylation, a hallmark of active chromatin in fission yeast. Our findings showed that the SUMO-conjugating enzyme Hus5/Ubc9 interacted with the conserved heterochromatin proteins Swi6, Chp2 (a paralog of Swi6), and Clr4 (H3 Lys9 methyltransferase). Moreover, chromatin immunoprecipitation (ChIP) revealed that Hus5 was highly enriched in heterochromatic regions in a heterochromatin-dependent manner, suggesting a direct role of Hus5 in heterochromatin formation. We also found that Swi6, Chp2, and Clr4 themselves can be sumoylated in vivo and defective sumoylation of Swi6 or Chp2 compromised silencing. These results indicate that Hus5 associates with heterochromatin through interactions with heterochromatin proteins and modifies substrates whose sumoylations are required for heterochromatin stability, including heterochromatin proteins themselves.


Assuntos
Instabilidade Cromossômica , Inativação Gênica , Heterocromatina/metabolismo , Schizosaccharomyces/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Histona-Lisina N-Metiltransferase , Metiltransferases/genética , Metiltransferases/metabolismo , Ligação Proteica , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Técnicas do Sistema de Duplo-Híbrido , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
17.
J Biol Chem ; 277(33): 30264-70, 2002 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-12050150

RESUMO

In eukaryotes, Rad51 and Rad52 are two key components of homologous recombination and recombinational repair. These two proteins interact with each other. Here we investigated the role of interaction between Rhp51 and Rad22, the fission yeast homologs of Rad51 and Rad52, respectively, on the function of each protein. We identified a direct association between the two proteins and their self-interactions both in vivo and in vitro. We also determined the binding domains of each protein that mediate these interactions. To characterize the role of Rhp51-Rad22 interaction, we used random mutagenesis to identify the mutants Rhp51 and Rad22, which cannot interact each other. Interestingly, we found that mutant Rhp51 protein, which cannot interact with either Rad22 or Rti1 (G282D), lost its DNA repair ability. In contrast, mutant Rad22 proteins, which cannot specifically bind to Rhp51 (S379L and P381L), maintained their DNA repair ability. These results suggest that the interaction between Rhp51 and Rad22 is crucial for the recombinational repair function of Rhp51. However, the significance of this interaction on the function of Rad22 remains to be characterized further.


Assuntos
Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Recombinação Genética , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Reparo do DNA , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Mutação , Ligação Proteica , Rad51 Recombinase , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
18.
Cell Struct Funct ; 27(3): 145-55, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12207045

RESUMO

We investigated whether yeast signals could regulate hormone processing in mammalian cells. Chmeric genes coding for the prepro region of yeast alpha-factor and the functional hormone region of anglerfish somatostatin was expressed in rat pituitary GH(3) cells. The nascent prepro-alpha-factor-somatostatin peptides disappeared from cells with a half-life of 30 min, and about 20% of unprocessed precursors remained intracellular after a 2 h chase period. Disappearance of propeptide was insensitive to lysosomotropic agents, but was inhibited at 15 degrees C or 20 degrees C, suggesting that the hybrid propeptides were not degraded in the secretory pathway to the trans Golgi network or in lysosomes. It appeared that while most unprocessed precursors were constitutively secreted into the medium, a small portion were processed at their paired dibasic sites by prohormone-processing enzymes located in trans Golgi network/secretory vesicles, resulting in the production of mature somatostatin peptides. To test this hypothesis, we investigated the processing pattern of two different hybrid precursors: the 52-1 hybrid precursor, which has a Glu-Ala spacer between the prepro region of alpha-factor and somatostatin, and the 58-1 hybrid precursor, which lacks the Glu-Ala spacer. Processing of metabolically labeled hybrid propeptides to smaller somatostatin peptides was assessed by HPLC. When pulse-labeled cells were chased for up to 2 h, 68% of the initially synthesized propeptides were secreted constitutively. About 22% of somatostatin-related products were proteolytically processed to mature somatostatin, of which 38.7% were detected intracellularly after 2 h. From N-terminal peptide sequence determination of somatostatin-related products in GH(3)-52 and GH(3)-58 cells, we found that both hybrid precursors were accurately cleaved at their dibasic amino acid sites. Notably, we also observed that the Glu-Ala spacer sequence was removed from 52-1 hybrid precursors. The latter result strongly suggests that a novel dipeptidyl aminopeptidase activity - a yeast STE13-like enzyme - is present in the post-trans Golgi network compartment of GH(3) cells. The data from these studies indicate that mechanisms which control protein secretion are conserved between yeast and mammalian cells.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Adeno-Hipófise/citologia , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Células Cultivadas , Quimera , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Hormônio do Crescimento/metabolismo , Lipoproteínas/biossíntese , Feromônios , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/ultraestrutura , Ratos , Proteínas de Saccharomyces cerevisiae , Somatostatina/biossíntese , Somatostatina/genética , Somatostatina/metabolismo
19.
J Biol Chem ; 279(50): 51999-2006, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15466874

RESUMO

Adipocyte determination- and differentiation-dependent factor 1 (ADD1) plays important roles in lipid metabolism and insulin-dependent gene expression. Because insulin stimulates carbohydrate and lipid synthesis, it would be important to decipher how the transcriptional activity of ADD1/SREBP1c is regulated in the insulin signaling pathway. In this study, we demonstrated that glycogen synthase kinase (GSK)-3 negatively regulates the transcriptional activity of ADD1/SREBP1c. GSK3 inhibitors enhanced a transcriptional activity of ADD1/SREBP1c and expression of ADD1/SREBP1c target genes including fatty acid synthase (FAS), acetyl-CoA carboxylase 1 (ACC1), and steroyl-CoA desaturase 1 (SCD1) in adipocytes and hepatocytes. In contrast, overexpression of GSK3beta down-regulated the transcriptional activity of ADD1/SREBP1c. GSK3 inhibitor-mediated ADD1/SREBP1c target gene activation did not require de novo protein synthesis, implying that GSK3 might affect transcriptional activity of ADD1/SREBP1c at the level of post-translational modification. Additionally, we demonstrated that GSK3 efficiently phosphorylated ADD1/SREBP1c in vitro and in vivo. Therefore, these data suggest that GSK3 inactivation is crucial to confer stimulated transcriptional activity of ADD1/SREBP1c for insulin-dependent gene expression, which would coordinate lipid and glucose metabolism.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3-L1 , Animais , Sequência de Bases , Proteínas Estimuladoras de Ligação a CCAAT/genética , Linhagem Celular , DNA/genética , Proteínas de Ligação a DNA/genética , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Técnicas In Vitro , Indóis/farmacologia , Insulina/metabolismo , Metabolismo dos Lipídeos , Cloreto de Lítio/farmacologia , Maleimidas/farmacologia , Camundongos , Fosforilação , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1 , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos
20.
J Biol Chem ; 279(41): 42850-9, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15292231

RESUMO

A study of gene silencing within the mating-type region of fission yeast defines two distinct pathways responsible for the establishment of heterochromatin assembly. One is RNA interference-dependent and acts on centromere-homologous repeats (cenH). The other is a stochastic Swi6 (the fission yeast HP1 homolog)-dependent mechanism that is not fully understood. Here we find that activating transcription factor (Atf1) and Pcr1, the fission yeast bZIP transcription factors homologous to human ATF-2, are crucial for proper histone deacetylation of both H3 and H4. This deacetylation is a prerequisite for subsequent H3 lysine 9 methylation and Swi6-dependent heterochromatin assembly across the rest of the silent mating-type (mat) region lacking the RNA interference-dependent cenH repeat. Moreover, Atf1 and Pcr1 can form complexes with both a histone deacetylase, Clr6, and Swi6, and clr6 mutations affected the H3/H4 acetylation patterns, similar to the atf1 and pcr1 deletion mutant phenotypes at the endogenous mat loci and at the ctt1+ promoter region surrounding ATF/CRE-binding site. These data suggest that Atf1 and Pcr1 participate in an early step essential for heterochromatin assembly at the mat locus and silencing of transcriptional targets of Atf1. Furthermore, a phosphorylation event catalyzed by the conserved mitogen-activated protein kinase pathway is important for regulation of heterochromatin silencing by Atf1 and Pcr1. These findings suggest a role for the mitogen-activated protein kinase pathway and histone deacetylase in Swi6-based heterochromatin assembly.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/fisiologia , Heterocromatina/química , Sistema de Sinalização das MAP Quinases , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/fisiologia , Acetiltransferases/metabolismo , Fator 1 Ativador da Transcrição , Fatores Ativadores da Transcrição , Cromatina/química , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Inativação Gênica , Glutationa Transferase/metabolismo , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Imunoprecipitação , Lisina/química , Modelos Genéticos , Mutação , Fenótipo , Fosforilação , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA