RESUMO
Oral cancer remains the leading cause of death worldwide. Rhein is a natural compound extracted from the traditional Chinese herbal medicine rhubarb, which has demonstrated therapeutic effects in various cancers. However, the specific effects of rhein on oral cancer are still unclear. This study aimed to investigate the potential anticancer activity and underlying mechanisms of rhein in oral cancer cells. The antigrowth effect of rhein in oral cancer cells was estimated by cell proliferation, soft agar colony formation, migration, and invasion assay. The cell cycle and apoptosis were detected by flow cytometry. The underlying mechanism of rhein in oral cancer cells was explored by immunoblotting. The in vivo anticancer effect was evaluated by oral cancer xenografts. Rhein significantly inhibited oral cancer cell growth by inducing apoptosis and S-phase cell cycle arrest. Rhein inhibited oral cancer cell migration and invasion through the regulation of epithelial-mesenchymal transition-related proteins. Rhein induced reactive oxygen species (ROS) accumulation in oral cancer cells to inhibit the AKT/mTOR signaling pathway. Rhein exerted anticancer activity in vitro and in vivo by inducing oral cancer cell apoptosis and ROS via the AKT/mTOR signaling pathway in oral cancer. Rhein is a potential therapeutic drug for oral cancer treatment.
Assuntos
Neoplasias Bucais , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Proliferação de Células , Neoplasias Bucais/tratamento farmacológico , Linhagem Celular TumoralRESUMO
Oral cancer (OC) has been attracted research attention in recent years as result of its high morbidity and mortality. Costunolide (CTD) possesses potential anticancer and bioactive abilities that have been confirmed in several types of cancers. However, its effects on oral cancer remain unclear. This study investigated the potential anticancer ability and underlying mechanisms of CTD in OC in vivo and in vitro. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of CTD on OC cells; assessments for migration and invasion of OC cells were conducted by transwell; Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. The results revealed that CTD suppressed the proliferation, migration and invasion of oral cancer cells effectively and induced cell cycle arrest and apoptosis; regarding the mechanism, CTD bound to AKT directly by binding assay and repressed AKT activities through kinase assay, which thereby downregulating the downstream of AKT. Furthermore, CTD remarkably promotes the generation of reactive oxygen species by flow cytometry assay, leading to cell apoptosis. Notably, CTD strongly suppresses cell-derived xenograft OC tumor growth in an in vivo mouse model. In conclusion, our results suggested that costunolide might prevent progression of OC and promise to be a novel AKT inhibitor.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/farmacologia , Animais , Ciclo Celular , Movimento Celular , Proliferação de Células , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Nus , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
We have demonstrated a simple and effective strategy, the so-called axial illumination scheme, that is able to obtain representative Raman spectra of suspension samples with minimal influence from internal particle settling. In a partially settled suspension sample, since particle concentrations at given points throughout the sample differ, the acquisition of Raman spectra representative of the entire sample composition is critically important for accurate quantitative analysis. The proposed scheme used axially irradiated laser radiation in the same or opposite direction of settling, thus allowing laser photons to migrate through the settling-induced particle-density gradient formed in the suspension and to widely interact with particles regardless of their settled locations. Therefore, transmitted Raman signals gathered opposite to the illumination could be more representative of the overall suspension composition even with partial settling. In this study, the performance of axial illumination schemes (TB (Top-to-Bottom) and BT (Bottom-to-Top) illumination) was evaluated for the determination of the aceclofenac (a non-steroidal anti-inflammatory drug) concentration in suspensions. Although the spectral features exhibited minute variations during settling, settling did not significantly degrade the accuracy of the concentration determination, thereby indicating effective acquisition of settling-tolerant Raman spectra. In addition, the characteristics of photon migration in a partially settled suspension sample were studied using a simulation based on Monte-Carlo method.
Assuntos
Anti-Inflamatórios não Esteroides/química , Diclofenaco/análogos & derivados , Análise Espectral Raman/métodos , Diclofenaco/químicaRESUMO
Maintaining epidermal homeostasis relies on a tightly organized process of proliferation and differentiation of keratinocytes. While past studies have primarily focused on calcium regulation in keratinocyte differentiation, recent research has shed light on the crucial role of lysosome dysfunction in this process. TLR adaptor interacting with SLC15A4 on the lysosome (TASL) plays a role in regulating pH within the endo-lysosome. However, the specific role of TASL in keratinocyte differentiation and its potential impact on proliferation remains elusive. In our study, we discovered that TASL deficiency hinders the proliferation and migration of keratinocytes by inducing G1/S cell cycle arrest. Also, TASL deficiency disrupts proper differentiation process in TASL knockout human keratinocyte cell line (HaCaT) by affecting lysosomal function. Additionally, our research into calcium-induced differentiation showed that TASL deficiency affects calcium modulation, which is essential for keratinocyte regulation. These findings unveil a novel role of TASL in the proliferation and differentiation of keratinocytes, providing new insights into the intricate regulatory mechanisms of keratinocyte biology.
Assuntos
Cálcio , Diferenciação Celular , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular , Queratinócitos , Lisossomos , Humanos , Cálcio/metabolismo , Linhagem Celular , Movimento Celular , Queratinócitos/metabolismo , Queratinócitos/citologia , Lisossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismoRESUMO
Inflammatory bowel disease (IBD) is a chronic inflammatory condition that is influenced by various factors, including environmental factors, immune responses, and genetic elements. Among the factors that influence IBD progression, macrophages play a significant role in generating inflammatory mediators, and an increase in the number of activated macrophages contributes to cellular damage, thereby exacerbating the overall inflammatory conditions. HSPA9, a member of the heat shock protein 70 family, plays a crucial role in regulating mitochondrial processes and responding to oxidative stress. HSPA9 deficiency disrupts mitochondrial dynamics, increasing mitochondrial fission and the production of reactive oxygen species. Based on the known functions of HSPA9, we considered the possibility that HSPA9 reduction may contribute to the exacerbation of colitis and investigated its relevance. In a dextran sodium sulfate-induced colitis mouse model, the downregulated HSPA9 exacerbates colitis symptoms, including increased immune cell infiltration, elevated proinflammatory cytokines, decreased tight junctions, and altered macrophage polarization. Moreover, along with the increased mitochondrial fission, we found that the reduction in HSPA9 significantly affected the superoxide dismutase 1 levels and contributed to cellular death. These findings enhance our understanding of the intricate mechanisms underlying colitis and contribute to the development of novel therapeutic approaches for this challenging condition.
Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Morte Celular , Colite/metabolismo , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Estresse OxidativoRESUMO
BACKGROUND/AIM: Skin wound healing is a physiological process restoring the structural and functional integrity of injured skin. During this process, wound management preventing bacterial infection and complications is important for the regeneration of skin layers and adnexa, as well as the protective function of the skin. Therefore, the development of an effective ointment to promote wound healing without complications is beneficial. MATERIALS AND METHODS: This study developed Raepenol™ cream, comprising a base cream and natural compounds including paeonol, D-panthenol and extract of Centella asiatica, and assessed its therapeutic effect in wound healing. A rat model of skin wound healing and a mouse model of imiquimod-induced pruritus were employed. The effect of Raepenol™ cream was evaluated by wound size and histological analysis, including the integrity of skin structures and inflammatory response. RESULTS: Raepenol™ cream treatment effectively restored the structural integrity of the skin in rats, including wound closure, regeneration of skin adnexa, and reconstitution of collagen, comparable to commercial ointment. Additionally, Raepenol™ cream significantly suppressed pruritus by inhibiting mast cell infiltration or retention in the inflammatory site of mouse ears. CONCLUSION: Raepenol™ cream effectively promoted wound healing and relieved pruritus in animal models. These results suggest that it could be a promising option for wound care and pruritus relief, offering potential advantages over current ointments.
Assuntos
Modelos Animais de Doenças , Prurido , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Camundongos , Ratos , Prurido/tratamento farmacológico , Masculino , Pele/efeitos dos fármacos , Pele/patologia , Pele/lesões , Pomadas , Creme para a Pele , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêuticoRESUMO
OBJECTIVE: Calcineurin-binding protein 1 (CABIN-1) regulates calcineurin phosphatase activity as well as the activation, apoptosis, and inflammatory responses of fibroblast-like synoviocytes (FLS), which actively participate in the chronic inflammatory responses in rheumatoid arthritis (RA). However, the mechanism of action of CABIN-1 in FLS apoptosis is not clear. This study was undertaken to define the regulatory role of CABIN-1 in FLS from mice with collagen-induced arthritis (CIA). METHODS: Transgenic mice overexpressing human CABIN-1 in joint tissue under the control of a type II collagen promoter were generated. Expression of human CABIN-1 (hCABIN-1) in joints and FLS was determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. The expression of cytokines, matrix metalloproteinases (MMPs), and apoptosis-related genes in FLS was determined by enzyme-linked immunosorbent assay, gelatin zymography, and RT-PCR, respectively. Joints were stained with hematoxylin and eosin and with tartrate-resistant acid phosphatase for histologic analysis. RESULTS: Human CABIN-1-transgenic mice with CIA had less severe arthritis than wild-type mice with CIA, as assessed according to hind paw thickness and histologic features. The milder arthritis was accompanied by significantly enhanced apoptosis in transgenic mice, evidenced by a significantly greater number of TUNEL-positive cells in synovial tissue. Expression of inflammatory cytokines and MMPs in the transgenic mice with CIA was reduced, and they exhibited decreased Akt activation and increased expression of p53, caspase 3, caspase 9, and Bax. CONCLUSION: Our findings demonstrate that hCABIN-1 plays a critical role in promoting apoptosis of FLS and in attenuating inflammation and cartilage and bone destruction in RA. These results help elucidate the pathogenic mechanisms of RA and suggest that CABIN-1 is a potential target for treatment of this disease.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/fisiologia , Artrite Experimental/patologia , Articulações/patologia , Membrana Sinovial/patologia , Animais , Artrite Experimental/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Articulações/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Membrana Sinovial/metabolismoRESUMO
Background: Oral cancer is one of the most prevalent malignant tumors worldwide. Silibinin has been reported to exert therapeutic effects in various cancer models. However, its mechanism of action in oral cancer remains unclear. We aimed to examine the molecular processes underlying the effects of silibinin in oral cancer in vitro and in vivo as well as its potential anticancer effects. Next, we investigated the molecular processes underlying both in vitro and in vivo outcomes of silibinin treatment on oral cancer. Methods: To investigate the effects of silibinin on the growth of oral cancer cells, cell proliferation and anchorage-independent colony formation tests were conducted on YD10B and Ca9-22 oral cancer cells. The effects of silibinin on the migration and invasion of oral cancer cells were evaluated using transwell assays. Flow cytometry was used to examine apoptosis, cell cycle distribution, and accumulation of reactive oxygen species (ROS). The molecular mechanism underlying the anticancer effects of silibinin was explored using immunoblotting. The in vivo effects of silibinin were evaluated using a Ca9-22 xenograft mouse model. Results: Silibinin effectively suppressed YD10B and Ca9-22 cell proliferation and colony formation in a dose-dependent manner. Moreover, it induced cell cycle arrest in the G0/G1 phase, apoptosis, and ROS generation in these cells. Furthermore, silibinin inhibited the migration and invasion abilities of YD10B and Ca9-22 cells by regulating the expression of proteins involved in the epithelial-mesenchymal transition. Western blotting revealed that silibinin downregulated SOD1 and SOD2 and triggered the JNK/c-Jun pathway in oral cancer cells. Silibinin significantly inhibited xenograft tumor growth in nude mice, with no obvious toxicity. Conclusions: Silibinin considerably reduced the development of oral cancer cells by inducing apoptosis, G0/G1 arrest, ROS generation, and activation of the JNK/c-Jun pathway. Importantly, silibinin effectively suppressed xenograft tumor growth in nude mice. Our findings indicate that silibinin may be a promising option for the prevention or treatment of oral cancer.
RESUMO
Background: Colorectal cancer (CRC) has a high morbidity and mortality worldwide. 20 (S)-ginsenoside Rh2 (G-Rh2) is a natural compound extracted from ginseng, which exhibits anticancer effects in many cancer types. In this study, we demonstrated the effect and underlying molecular mechanism of G-Rh2 in CRC cells in vitro and in vivo. Methods: Cell proliferation, migration, invasion, apoptosis, cell cycle, and western blot assays were performed to evaluate the effect of G-Rh2 on CRC cells. In vitro pull-down assay was used to verify the interaction between G-Rh2 and Axl. Transfection and infection experiments were used to explore the function of Axl in CRC cells. CRC xenograft models were used to further investigate the effect of Axl knockdown and G-Rh2 on tumor growth in vivo. Results: G-Rh2 significantly inhibited proliferation, migration, and invasion, and induced apoptosis and G0/G1 phase cell cycle arrest in CRC cell lines. G-Rh2 directly binds to Axl and inhibits the Axl signaling pathway in CRC cells. Knockdown of Axl suppressed the growth, migration and invasion ability of CRC cells in vitro and xenograft tumor growth in vivo, whereas overexpression of Axl promoted the growth, migration, and invasion ability of CRC cells. Moreover, G-Rh2 significantly suppressed CRC xenograft tumor growth by inhibiting Axl signaling with no obvious toxicity to nude mice. Conclusion: Our results indicate that G-Rh2 exerts anticancer activity in vitro and in vivo by suppressing the Axl signaling pathway. G-Rh2 is a promising candidate for CRC prevention and treatment.
RESUMO
The effect of glucose-dependent insulinotropic polypeptide (GIP) on cells under oxidative stress induced by glutamate, a neurotransmitter, and the underlying molecular mechanisms were assessed in the present study. We found that in the pre-treatment of HT-22 cells with glutamate in a dose-dependent manner, intracellular ROS were excessively generated, and additional cell damage occurred in the form of lipid peroxidation. The neurotoxicity caused by excessive glutamate was found to be ferroptosis and not apoptosis. Other factors (GPx-4, Nrf2, Nox1 and Hspb1) involved in ferroptosis were also identified. In other words, it was confirmed that GIP increased the activity of sub-signalling molecules in the process of suppressing ferroptosis as an antioxidant and maintained a stable cell cycle even under glutamate-induced neurotoxicity. At the same time, in HT-22 cells exposed to ferroptosis as a result of excessive glutamate accumulation, GIP sustained cell viability by activating the mitogen-activated protein kinase (MAPK) signalling pathway. These results suggest that the overexpression of the GIP gene increases cell viability by regulating mechanisms related to cytotoxicity and reactive oxygen species production in hippocampal neuronal cell lines.
RESUMO
BACKGROUND/AIM: [6]-Gingerol, a compound extracted from ginger, has been studied for its therapeutic potential in various types of cancers. However, its effects on oral cancer remain largely unknown. Here, we aimed to investigate the potential anticancer activity and underlying mechanisms of [6]-gingerol in oral cancer cells. MATERIALS AND METHODS: We analyzed the antigrowth effects of [6]-gingerol in oral cancer cell lines by cell proliferation, colony formation, migration, and invasion assays. We detected cell cycle and apoptosis with flow cytometry and further explored the mechanisms of action by immunoblotting. RESULTS: [6]-Gingerol significantly inhibited oral cancer cell growth by inducing apoptosis and cell cycle G2/M phase arrest. [6]-Gingerol also inhibited oral cancer cell migration and invasion by up-regulating E-cadherin and down-regulating N-cadherin and vimentin. Moreover, [6]-gingerol induced the activation of AMPK and suppressed the AKT/mTOR signaling pathway in YD10B and Ca9-22 cells. CONCLUSION: [6]-Gingerol exerts anticancer activity by activating AMPK and suppressing the AKT/mTOR signaling pathway in oral cancer cells. Our findings highlight the potential of [6]-gingerol as a therapeutic drug for oral cancer treatment.
Assuntos
Neoplasias Bucais , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases Ativadas por AMP/genética , Apoptose , Catecóis , Linhagem Celular Tumoral , Proliferação de Células , Álcoois Graxos , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genéticaRESUMO
BACKGROUND: Colorectal cancer (CRC) is a clinically challenging malignant tumor worldwide. As a natural product and sesquiterpene lactone, Costunolide (CTD) has been reported to possess anticancer activities. However, the regulation mechanism and precise target of this substance remain undiscovered in CRC. In this study, we found that CTD inhibited CRC cell proliferation in vitro and in vivo by targeting AKT. METHODS: Effects of CTD on colon cancer cell growth in vitro were evaluated in cell proliferation assays, migration and invasion, propidium iodide, and annexin V-staining analyses. Targets of CTD were identified utilizing phosphoprotein-specific antibody array; Costunolide-sepharose conjugated bead pull-down analysis and knockdown techniques. We investigated the underlying mechanisms of CTD by ubiquitination, immunofluorescence staining, and western blot assays. Cell-derived tumour xenografts (CDX) in nude mice and immunohistochemistry were used to assess anti-tumour effects of CTD in vivo. RESULTS: CTD suppressed the proliferation, anchorage-independent colony growth and epithelial-mesenchymal transformation (EMT) of CRC cells including HCT-15, HCT-116 and DLD1. Besides, the CTD also triggered cell apoptosis and cell cycle arrest at the G2/M phase. The CTD activates and induces p53 stability by inhibiting MDM2 ubiquitination via the suppression of AKT's phosphorylation in vitro. The CTD suppresses cell growth in a p53-independent fashion manner; p53 activation may contribute to the anticancer activity of CTD via target AKT. Finally, the CTD decreased the volume of CDX tumors without of the body weight loss and reduced the expression of AKT-MDM2-p53 signaling pathway in xenograft tumors. CONCLUSIONS: Our project has uncovered the mechanism underlying the biological activity of CTD in colon cancer and confirmed the AKT is a directly target of CTD. All of which These results revealed that CTD might be a new AKT inhibitor in colon cancer treatment, and CTD is worthy of further exploration in preclinical and clinical trials.
Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sesquiterpenos/uso terapêutico , Animais , Apoptose , Feminino , Humanos , Camundongos , Sesquiterpenos/farmacologia , Transfecção , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Melanoma is the most common type of skin cancer and its incidence is rapidly increasing. AKT, and its related signaling pathways, are highly activated in many cancers including lung, colon, and esophageal cancers. Costunolide (CTD) is a sesquiterpene lactone that has been reported to possess neuroprotective, anti-inflammatory, and anti-cancer properties. However, the target and mechanism underlying its efficacy in melanoma have not been identified. In this study, we elucidated the mechanism behind the anti-cancer effect of CTD in melanoma in vitro and in vivo by identifying CTD as an AKT inhibitor. We first verified that p-AKT and AKT are highly expressed in melanoma patient tissues and cell lines. CTD significantly inhibited the proliferation, migration, and invasion of melanoma cells including SK-MEL-5, SK-MEL-28, and A375 that are overexpressed p-AKT and AKT proteins. We investigated the mechanism of CTD using a computational docking modeling, pull-down, and site directed mutagenesis assay. CTD directly bound to AKT thereby arresting cell cycle at the G1 phase, and inducing the apoptosis of melanoma cells. In addition, CTD regulated the G1 phase and apoptosis biomarkers, and inhibited the expression of AKT/mTOR/GSK3b/p70S6K/4EBP cascade proteins. After reducing AKT expression in melanoma cells, cell growth was significantly decreased and CTD did not showed further inhibitory effects. Furthermore, CTD administration suppressed tumor growth and weight in cell-derived xenograft mice models in vivo without body weight loss and inhibited the expression of Ki-67, p-AKT, and p70S6K in tumor tissues. In summary, our study implied that CTD inhibited melanoma progression in vitro and in vivo. In this study, we reported that CTD could affect melanoma growth by targeting AKT. Therefore, CTD has considerable potential as a drug for melanoma therapy.
RESUMO
Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. Rhein has demonstrated therapeutic effects in various cancer models. However, its effects and underlying mechanisms of action in CRC remain poorly understood. We investigated the potential anticancer activity and underlying mechanisms of rhein in CRC in vitro and in vivo. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of rhein on CRC cells. Wound-healing and Transwell assays were conducted to assess cell migration and invasion capacity. Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. A tissue microarray was used to detect mTOR expression in CRC patient tissues. Gene overexpression and knockdown were done to analyze the function of mTOR in CRC. The anticancer effect of rhein in vivo was assessed in a CRC xenograft mouse model. The results show that rhein significantly inhibited CRC cell growth by inducing S-phase cell cycle arrest and apoptosis. Rhein inhibited CRC cell migration and invasion through the epithelial-mesenchymal transition (EMT) process. mTOR was highly expressed in CRC cancer tissues and cells. Overexpression of mTOR promoted cell growth, migration, and invasion, whereas mTOR knockdown diminished these phenomena in CRC cells in vitro. In addition, rhein directly targeted mTOR and inhibited the mTOR signaling pathway in CRC cells. Rhein promoted mTOR degradation through the ubiquitin-proteasome pathway. Intraperitoneal administration of rhein inhibited HCT116 xenograft tumor growth through the mTOR pathway. In conclusion, rhein exerts anticancer activity in vitro and in vivo by targeting mTOR and inhibiting the mTOR signaling pathway in CRC. Our results indicate that rhein is a potent anticancer agent that may be useful for the prevention and treatment of CRC.
RESUMO
PURPOSE: Psoriasis is a common and well-studied autoimmune skin disease, which is characterized by plaques. The formation of psoriasis plaques occurs through the hyperproliferation and abnormal differentiation of keratinocytes, infiltration of numerous immune cells into the dermis, increased subepidermal angiogenesis, and various autoimmune-associated cytokines and chemokines. According to previous research, Lin28 regulates the let-7 family, and let-7b is associated with psoriasis. However, the link between Lin28 and psoriasis is unclear. In this study, an association was identified between Lin28a and psoriasis progression, which promoted the pathological characteristic of psoriasis in epidermal keratinocytes. PATIENTS AND METHODS: This study aims to investigate the role of Lin28a and its underlying mechanism in psoriasis through in vivo and in vitro models, which include the Lin28a-overexpressing transgenic (TG) mice and Lin28a-overexpressing human keratinocyte (HaCaT) cell lines, respectively. RESULTS: In vivo and in vitro results revealed that overexpression of Lin28a downregulated microRNA let-7 expression levels and caused hyperproliferation and abnormal differentiation in keratinocytes. In imiquimod (IMQ)-induced psoriasis-like inflammation, Lin28a overexpressing transgenic (TG) mice exhibited more severe symptoms of psoriasis. CONCLUSION: Mechanistically, Lin28a exacerbated psoriasis-like inflammation through the activation of the extracellular-signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 signaling (STAT 3) by targeting proinflammatory cytokine interleukin-6 (IL-6).
RESUMO
Mouse embryonic stem cells (mESCs) go through self-renewal in the existence of the cytokine leukemia inhibitory factor (LIF). LIF is added to the mouse stem cells culture medium, and its removal results in fast differentiation. Dimethyl sulfoxide (DMSO) is one of the most used solvents in drug test. We exposed 4-day mESC cultures to different concentrations of DMSO (0.1%, 0.5%, 1.0%, and 2.0%) to identify the safest dose exhibiting efficacy as a solvent. mESCs grown under general pluripotency conditions in the absence of LIF were treated with DMSO. In addition, as a control for differentiation, mESCs were grown in the absence of LIF. DMSO upregulated the mRNA expression level of pluripotency markers. Moreover, DMSO reduced the mRNA expression levels of ectodermal marker (ß-tubulin3), mesodermal marker (Hand1), and endodermal markers (Foxa2 and Sox17) in mESCs. These results indicate that DMSO treatment enhances the pluripotency and disrupts the differentiation of mESCs. We also show that members of the Tet oncogene family are critical to inhibiting the differentiation and methylation of mESCs. DMSO is appropriate to sustain the pluripotency of mESCs in the absence of LIF, and that mESCs can be sustained in an undifferentiated state using DMSO. Therefore, DMSO may, in part, function as a substitute for LIF.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Fator Inibidor de Leucemia/farmacologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Pluripotentes/citologiaRESUMO
The oxidation behavior of Ni-9.5Co-(8~12)Cr-(2.5~5.5)Mo-(4~8)W-3Al-5Ti-3Ta-0.1C-0.01B alloys was investigated at 850 °C and 1000 °C The mass change, the phase of oxides, and the cross-sectional structure of specimens were analyzed after cyclic oxidation tests. The oxide scale was composed mainly of Cr2O3 and NiCr2O4, but NiO, TiO2, and CrTaO4 were also found. Al2O3 was formed beneath the Cr oxide layer. The Cr oxide layer and internal Al oxide acted as barriers to oxidation at 850 °C, while Al oxide was predominantly protective at 1000 °C. Cr increased the mass gain after oxidation test at both temperatures. Mo increased the oxidation rate at 850 °C but decreased the oxidation rate at 1000 °C. W slightly increased the mass gain at 850 °C but did not produce a significant effect at 1000 °C. The effects of Cr, Mo, W, and the temperature were discussed as well as the volatilization of oxides, the valence number of elements, and diffusion retardation.