Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Am J Hum Genet ; 110(9): 1600-1605, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37607539

RESUMO

Recent studies in non-human model systems have shown therapeutic potential of nucleoside-modified messenger RNA (modRNA) treatments for lysosomal storage diseases. Here, we assessed the efficacy of a modRNA treatment to restore the expression of the galactosidase alpha (GLA), which codes for α-Galactosidase A (α-GAL) enzyme, in a human cardiac model generated from induced pluripotent stem cells (iPSCs) derived from two individuals with Fabry disease. Consistent with the clinical phenotype, cardiomyocytes from iPSCs derived from Fabry-affected individuals showed accumulation of the glycosphingolipid Globotriaosylceramide (GB3), which is an α-galactosidase substrate. Furthermore, the Fabry cardiomyocytes displayed significant upregulation of lysosomal-associated proteins. Upon GLA modRNA treatment, a subset of lysosomal proteins were partially restored to wild-type levels, implying the rescue of the molecular phenotype associated with the Fabry genotype. Importantly, a significant reduction of GB3 levels was observed in GLA modRNA-treated cardiomyocytes, demonstrating that α-GAL enzymatic activity was restored. Together, our results validate the utility of iPSC-derived cardiomyocytes from affected individuals as a model to study disease processes in Fabry disease and the therapeutic potential of GLA modRNA treatment to reduce GB3 accumulation in the heart.


Assuntos
Doença de Fabry , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , RNA , Doença de Fabry/genética , Doença de Fabry/terapia , RNA Mensageiro
2.
EMBO Rep ; 25(4): 1835-1858, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429578

RESUMO

Cancer cachexia is a tumour-induced wasting syndrome, characterised by extreme loss of skeletal muscle. Defective mitochondria can contribute to muscle wasting; however, the underlying mechanisms remain unclear. Using a Drosophila larval model of cancer cachexia, we observed enlarged and dysfunctional muscle mitochondria. Morphological changes were accompanied by upregulation of beta-oxidation proteins and depletion of muscle glycogen and lipid stores. Muscle lipid stores were also decreased in Colon-26 adenocarcinoma mouse muscle samples, and expression of the beta-oxidation gene CPT1A was negatively associated with muscle quality in cachectic patients. Mechanistically, mitochondrial defects result from reduced muscle insulin signalling, downstream of tumour-secreted insulin growth factor binding protein (IGFBP) homologue ImpL2. Strikingly, muscle-specific inhibition of Forkhead box O (FOXO), mitochondrial fusion, or beta-oxidation in tumour-bearing animals preserved muscle integrity. Finally, dietary supplementation with nicotinamide or lipids, improved muscle health in tumour-bearing animals. Overall, our work demonstrates that muscle FOXO, mitochondria dynamics/beta-oxidation and lipid utilisation are key regulators of muscle wasting in cancer cachexia.


Assuntos
Neoplasias do Colo , Proteínas de Drosophila , Insulinas , Camundongos , Animais , Humanos , Caquexia/etiologia , Caquexia/metabolismo , Drosophila/metabolismo , Dinâmica Mitocondrial , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Neoplasias do Colo/metabolismo , Insulinas/metabolismo , Lipídeos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
EMBO Rep ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103676

RESUMO

The Hippo tumor suppressor pathway controls transcription by regulating nuclear abundance of YAP and TAZ, which activate transcription with the TEAD1-TEAD4 DNA-binding proteins. Recently, several small-molecule inhibitors of YAP and TEADs have been reported, with some entering clinical trials for different cancers with Hippo pathway deregulation, most notably, mesothelioma. Using genome-wide CRISPR/Cas9 screens we reveal that mutations in genes from the Hippo, MAPK, and JAK-STAT signaling pathways all modulate the response of mesothelioma cell lines to TEAD palmitoylation inhibitors. By exploring gene expression programs of mutant cells, we find that MAPK pathway hyperactivation confers resistance to TEAD inhibition by reinstating expression of a subset of YAP/TAZ target genes. Consistent with this, combined inhibition of TEAD and the MAPK kinase MEK, synergistically blocks proliferation of multiple mesothelioma and lung cancer cell lines and more potently reduces the growth of patient-derived lung cancer xenografts in vivo. Collectively, we reveal mechanisms by which cells can overcome small-molecule inhibition of TEAD palmitoylation and potential strategies to enhance the anti-tumor activity of emerging Hippo pathway targeted therapies.

4.
Proc Natl Acad Sci U S A ; 120(36): e2303867120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639587

RESUMO

Neutrophils store microbicidal glycoproteins in cytosolic granules to fight intruding pathogens, but their granule distribution and formation mechanism(s) during granulopoiesis remain unmapped. Herein, we comprehensively profile the neutrophil N-glycoproteome with spatiotemporal resolution by analyzing four key types of intracellular organelles isolated from blood-derived neutrophils and during their maturation from bone marrow-derived progenitors using a glycomics-guided glycoproteomics approach. Interestingly, the organelles of resting neutrophils exhibited distinctive glycophenotypes including, most strikingly, highly truncated N-glycans low in α2,6-sialylation and Lewis fucosylation decorating a diverse set of microbicidal proteins (e.g., myeloperoxidase, azurocidin, neutrophil elastase) in the azurophilic granules. Excitingly, proteomics and transcriptomics data from discrete myeloid progenitor stages revealed that profound glycoproteome remodeling underpins the promyelocytic-to-metamyelocyte transition and that the glycophenotypic differences are driven primarily by dynamic changes in protein expression and less by changes within the glycosylation machinery. Notable exceptions were the oligosaccharyltransferase subunits responsible for initiation of N-glycoprotein biosynthesis that were strongly expressed in early myeloid progenitors correlating with relatively high levels of glycosylation of the microbicidal proteins in the azurophilic granules. Our study provides spatiotemporal insights into the complex neutrophil N-glycoproteome featuring intriguing organelle-specific N-glycosylation patterns formed by dynamic glycoproteome remodeling during the early maturation stages of the myeloid progenitors.


Assuntos
Neutrófilos , Proteoma , Glicosilação , Cognição , Grânulos Citoplasmáticos
5.
J Biol Chem ; : 107580, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025452

RESUMO

Protein-protein interactions with high specificity and low affinity are functionally important but are not comprehensively understood because they are difficult to identify. Particularly intriguing are the dynamic and specific interactions between folded protein domains and short unstructured peptides known as short linear motifs (SLiMs). Such domain-motif interactions (DMIs) are often difficult to identify and study because affinities are modest to weak. Here we describe "electrophoretic crosslinking shift assay" (ECSA), a simple in vitro approach that detects transient, low affinity interactions by covalently crosslinking a prey protein and a fluorescently labeled bait. We demonstrate this technique on the well characterized DMI between MAP kinases and unstructured D-motif peptide ligands. We show that ECSA detects sequence-specific micromolar interactions using less than a microgram of input prey protein per reaction, making it ideal for verifying candidate low-affinity DMIs of components that purify with low yield. We propose ECSA as an intermediate step in SLiM characterization that bridges the gap between high throughput techniques such as phage display and more resource-intensive biophysical and structural analysis.

6.
FASEB J ; 38(10): e23647, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38787599

RESUMO

Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Arginina , Músculo Esquelético , Proteína-Arginina N-Metiltransferases , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Arginina/metabolismo , Arginina/análogos & derivados , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Camundongos , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Masculino , Metilação , Feminino , Processamento de Proteína Pós-Traducional , Camundongos Endogâmicos C57BL , Proteoma/metabolismo
7.
Nature ; 567(7747): 187-193, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814737

RESUMO

Dysregulation of lipid homeostasis is a precipitating event in the pathogenesis and progression of hepatosteatosis and metabolic syndrome. These conditions are highly prevalent in developed societies and currently have limited options for diagnostic and therapeutic intervention. Here, using a proteomic and lipidomic-wide systems genetic approach, we interrogated lipid regulatory networks in 107 genetically distinct mouse strains to reveal key insights into the control and network structure of mammalian lipid metabolism. These include the identification of plasma lipid signatures that predict pathological lipid abundance in the liver of mice and humans, defining subcellular localization and functionality of lipid-related proteins, and revealing functional protein and genetic variants that are predicted to modulate lipid abundance. Trans-omic analyses using these datasets facilitated the identification and validation of PSMD9 as a previously unknown lipid regulatory protein. Collectively, our study serves as a rich resource for probing mammalian lipid metabolism and provides opportunities for the discovery of therapeutic agents and biomarkers in the setting of hepatic lipotoxicity.


Assuntos
Metabolismo dos Lipídeos/genética , Lipídeos/análise , Lipídeos/genética , Proteômica , Animais , Células HEK293 , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/sangue , Lipídeos/classificação , Fígado/química , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Obesidade/genética , Obesidade/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
8.
Mol Cell Proteomics ; 22(11): 100655, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793502

RESUMO

Molecular clocks and daily feeding cycles support metabolism in peripheral tissues. Although the roles of local clocks and feeding are well defined at the transcriptional level, their impact on governing protein abundance in peripheral tissues is unclear. Here, we determine the relative contributions of local molecular clocks and daily feeding cycles on liver and muscle proteomes during the active phase in mice. LC-MS/MS was performed on liver and gastrocnemius muscle harvested 4 h into the dark phase from WT, Bmal1 KO, and dual liver- and muscle-Bmal1-rescued mice under either ad libitum feeding or time-restricted feeding during the dark phase. Feeding-fasting cycles had only minimal effects on levels of liver proteins and few, if any, on the muscle proteome. In contrast, Bmal1 KO altered the abundance of 674 proteins in liver and 80 proteins in muscle. Local rescue of liver and muscle Bmal1 restored ∼50% of proteins in liver and ∼25% in muscle. These included proteins involved in fatty acid oxidation in liver and carbohydrate metabolism in muscle. For liver, proteins involved in de novo lipogenesis were largely dependent on Bmal1 function in other tissues (i.e., the wider clock system). Proteins regulated by BMAL1 in liver and muscle were enriched for secreted proteins. We found that the abundance of fibroblast growth factor 1, a liver secreted protein, requires BMAL1 and that autocrine fibroblast growth factor 1 signaling modulates mitochondrial respiration in hepatocytes. In liver and muscle, BMAL1 is a more potent regulator of dark phase proteomes than daily feeding cycles, highlighting the need to assess protein levels in addition to mRNA when investigating clock mechanisms. The proteome is more extensively regulated by BMAL1 in liver than in muscle, and many metabolic pathways in peripheral tissues are reliant on the function of the clock system as a whole.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Cromatografia Líquida , Relógios Circadianos/genética , Ritmo Circadiano/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Músculos/metabolismo , Proteoma/metabolismo , Espectrometria de Massas em Tandem
9.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115399

RESUMO

The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.


Assuntos
Síndrome de Bloom/genética , DNA Cruciforme/genética , Instabilidade Genômica/genética , Alelos , Proteínas de Transporte/genética , Linhagem Celular , DNA Topoisomerases Tipo I/genética , Humanos , Mutação/genética , Ligação Proteica/genética , RecQ Helicases/genética , Recombinação Genética/genética , Solubilidade
10.
J Proteome Res ; 23(4): 1285-1297, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38480473

RESUMO

C18ORF25 was recently shown to be phosphorylated at S67 by AMP-activated protein kinase (AMPK) in the skeletal muscle, following acute exercise in humans. Phosphorylation was shown to improve the ex vivo skeletal muscle contractile function in mice, but our understanding of the molecular mechanisms is incomplete. Here, we profiled the interactome of C18ORF25 in mouse myotubes using affinity purification coupled to mass spectrometry. This analysis included an investigation of AMPK-dependent and S67-dependent protein/protein interactions. Several nucleocytoplasmic and contractile-associated proteins were identified, which revealed a subset of GTPases that associate with C18ORF25 in an AMPK- and S67 phosphorylation-dependent manner. We confirmed that C18ORF25 is localized to the nucleus and the contractile apparatus in the skeletal muscle. Mice lacking C18Orf25 display defects in calcium handling specifically in fast-twitch muscle fibers. To investigate these mechanisms, we developed an integrated single fiber physiology and single fiber proteomic platform. The approach enabled a detailed assessment of various steps in the excitation-contraction pathway including SR calcium handling and force generation, followed by paired single fiber proteomic analysis. This enabled us to identify >700 protein/phenotype associations and 36 fiber-type specific differences, following loss of C18Orf25. Taken together, our data provide unique insights into the function of C18ORF25 and its role in skeletal muscle physiology.


Assuntos
Proteínas Quinases Ativadas por AMP , Fibras Musculares de Contração Lenta , Camundongos , Humanos , Animais , Fibras Musculares de Contração Lenta/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteômica/métodos , Cálcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Contração Muscular , Espectrometria de Massas
11.
Nat Methods ; 18(11): 1304-1316, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34725484

RESUMO

Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.


Assuntos
Glicopeptídeos/sangue , Glicoproteínas/sangue , Informática/métodos , Proteoma/análise , Proteômica/métodos , Pesquisadores/estatística & dados numéricos , Software , Glicosilação , Humanos , Proteoma/metabolismo , Espectrometria de Massas em Tandem
12.
Appl Environ Microbiol ; 90(6): e0229323, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38786361

RESUMO

Bacteria shape interactions between hosts and fungal pathogens. In some cases, bacteria associated with fungi are essential for pathogen virulence. In other systems, host-associated microbiomes confer resistance against fungal pathogens. We studied an aphid-specific entomopathogenic fungus called Pandora neoaphidis in the context of both host and pathogen microbiomes. Aphids host several species of heritable bacteria, some of which confer resistance against Pandora. We first found that spores that emerged from aphids that harbored protective bacteria were less virulent against subsequent hosts and did not grow on plate media. We then used 16S amplicon sequencing to study the bacterial microbiome of fungal mycelia and spores during plate culturing and host infection. We found that the bacterial community is remarkably stable in culture despite dramatic changes in pathogen virulence. Last, we used an experimentally transformed symbiont of aphids to show that Pandora can acquire host-associated bacteria during infection. Our results uncover new roles for bacteria in the dynamics of aphid-pathogen interactions and illustrate the importance of the broader microbiological context in studies of fungal pathogenesis. IMPORTANCE: Entomopathogenic fungi play important roles in the population dynamics of many insect species. Understanding the factors shaping entomopathogen virulence is critical for agricultural management and for the use of fungi in pest biocontrol. We show that heritable bacteria in aphids, which confer protection to their hosts against fungal entomopathogens, influence virulence against subsequent hosts. Aphids reproduce asexually and are typically surrounded by genetically identical offspring, and thus these effects likely shape the dynamics of fungal disease in aphid populations. Furthermore, fungal entomopathogens are known to rapidly lose virulence in lab culture, complicating their laboratory use. We show that this phenomenon is not driven by changes in the associated bacterial microbiome. These results contribute to our broader understanding of the aphid model system and shed light on the biology of the Entomophthorales-an important but understudied group of fungi.


Assuntos
Afídeos , Microbiota , Animais , Afídeos/microbiologia , Virulência , Interações Hospedeiro-Patógeno , Entomophthorales/patogenicidade , Entomophthorales/fisiologia , Entomophthorales/genética , Bactérias/genética , Bactérias/classificação , Bactérias/patogenicidade , Bactérias/isolamento & purificação , Simbiose , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade
13.
Am J Physiol Cell Physiol ; 324(2): C205-C221, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534500

RESUMO

Cancer cachexia is common in many cancers and the loss of skeletal muscle mass compromises the response to therapies and quality of life. A contributing mechanism is oxidative stress and compounds able to attenuate it may be protective. Sulforaphane (SFN), a natural antioxidant in cruciferous vegetables, activates nuclear factor erythroid 2-related factor 2 (Nrf2) signaling to decrease oxidative stress. Although SFN has potential as a cancer therapeutic, whether it can attenuate muscle wasting in the absence or presence of chemotherapy is unknown. In healthy C2C12 myotubes, SFN administration for 48 h induced hypertrophy through increased myoblast fusion via Nrf2 and ERK signaling. To determine whether SFN could attenuate wasting induced by cancer cells, myotubes were cocultured with or without Colon-26 (C-26) cancer cells for 48 h and treated with 5-fluorouracil (5-FU, 5 µM) or vehicle (DMSO). SFN (10 µM) or DMSO was added for the final 24 h. Coculture with cancer cells in the absence and presence of 5-FU reduced myotube width by ∼30% (P < 0.001) and ∼20% (P < 0.01), respectively, which was attenuated by SFN (P < 0.05). Exposure to C-26 conditioned media reduced myotube width by 15% (P < 0.001), which was attenuated by SFN. Western immunoblotting and qRT-PCR confirmed activation of Nrf2 signaling and antioxidant genes. Coadministration of Nrf2 inhibitors (ML-385) or MEK inhibitors (PD184352) revealed that SFN's attenuation of atrophy was blocked by ERK inhibition. These data support the chemoprotective and antioxidative function of SFN in myotubes, highlighting its therapeutic potential for cancer-related muscle wasting.


Assuntos
Antioxidantes , Neoplasias , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Dimetil Sulfóxido/metabolismo , Qualidade de Vida , Fibras Musculares Esqueléticas/metabolismo , Estresse Oxidativo , Atrofia Muscular/patologia , Neoplasias/metabolismo , Fluoruracila/farmacologia
14.
J Proteome Res ; 22(2): 302-310, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35759515

RESUMO

We have developed the underrepresented post-translational modification (PTM) database (urPTMdb), a PTM gene set database to accelerate the discovery of enriched protein modifications in experimental data. urPTMdb provides curated lists of proteins reported to be substrates of underrepresented modifications. Their enrichment in proteomics datasets can reveal unexpected PTM regulations. urPTMdb can be implemented in existing workflows, or used in TeaProt, an online Shiny tool that integrates upstream transcription factor enrichment analysis with downstream pathway analysis through an easy-to-use interactive interface. TeaProt annotates user-uploaded data with drug-gene interactions, subcellular localizations, phenotypic functions, gene-disease associations, and enzyme-gene interactions. TeaProt enables gene set enrichment analysis (GSEA) to discover enrichments in gene sets from various resources, including MSigDB, CHEA, and urPTMdb. We demonstrate the utility of urPTMdb and TeaProt through the analysis of a previously published Western diet-induced remodeling of the tongue proteome, which revealed altered cellular processes associated with energy metabolism, interferon alpha/gamma response, adipogenesis, HMGylation substrate enrichment, and transcription regulation through PPARG and CEBPA. Additionally, we analyzed the interactome of ADP-ribose glycohydrolase TARG1, a key enzyme that removes mono-ADP-ribosylation. This analysis identified an enrichment of ADP-ribosylation, ribosomal proteins, and proteins localized in the nucleoli and endoplasmic reticulum. TeaProt and urPTMdb are accessible at https://tea.coffeeprot.com/.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica , ADP-Ribosilação , Adenosina Difosfato Ribose/metabolismo , Proteoma/genética
15.
BMC Genomics ; 24(1): 636, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875824

RESUMO

BACKGROUND: Insects are an important reservoir of viral biodiversity, but the vast majority of viruses associated with insects have not been discovered. Recent studies have employed high-throughput RNA sequencing, which has led to rapid advances in our understanding of insect viral diversity. However, insect genomes frequently contain transcribed endogenous viral elements (EVEs) with significant homology to exogenous viruses, complicating the use of RNAseq for viral discovery. METHODS: In this study, we used a multi-pronged sequencing approach to study the virome of an important agricultural pest and prolific vector of plant pathogens, the potato aphid Macrosiphum euphorbiae. We first used rRNA-depleted RNAseq to characterize the microbes found in individual insects. We then used PCR screening to measure the frequency of two heritable viruses in a local aphid population. Lastly, we generated a quality draft genome assembly for M. euphorbiae using Illumina-corrected Nanopore sequencing to identify transcriptionally active EVEs in the host genome. RESULTS: We found reads from two insect-specific viruses (a Flavivirus and an Ambidensovirus) in our RNAseq data, as well as a parasitoid virus (Bracovirus), a plant pathogenic virus (Tombusvirus), and two phages (Acinetobacter and APSE). However, our genome assembly showed that part of the 'virome' of this insect can be attributed to EVEs in the host genome. CONCLUSION: Our work shows that EVEs have led to the misidentification of aphid viruses from RNAseq data, and we argue that this is a widespread challenge for the study of viral diversity in insects.


Assuntos
Vírus de Plantas , Viroma , Animais , Insetos/genética , Vírus de Plantas/genética , Genoma de Inseto , Sequenciamento de Nucleotídeos em Larga Escala
16.
Neuroimage ; 265: 119765, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427753

RESUMO

The fusiform face area (FFA) is a widely studied region causally involved in face perception. Even though cognitive neuroscientists have been studying the FFA for over two decades, answers to foundational questions regarding the function, architecture, and connectivity of the FFA from a large (N>1000) group of participants are still lacking. To fill this gap in knowledge, we quantified these multimodal features of fusiform face-selective regions in 1053 participants in the Human Connectome Project. After manually defining over 4,000 fusiform face-selective regions, we report five main findings. First, 68.76% of hemispheres have two cortically separate regions (pFus-faces/FFA-1 and mFus-faces/FFA-2). Second, in 26.69% of hemispheres, pFus-faces/FFA-1 and mFus-faces/FFA-2 are spatially contiguous, yet are distinct based on functional, architectural, and connectivity metrics. Third, pFus-faces/FFA-1 is more face-selective than mFus-faces/FFA-2, and the two regions have distinct functional connectivity fingerprints. Fourth, pFus-faces/FFA-1 is cortically thinner and more heavily myelinated than mFus-faces/FFA-2. Fifth, face-selective patterns and functional connectivity fingerprints of each region are more similar in monozygotic than dizygotic twins and more so than architectural gradients. As we share our areal definitions with the field, future studies can explore how structural and functional features of these regions will inform theories regarding how visual categories are represented in the brain.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Encéfalo , Mapeamento Encefálico , Face , Reconhecimento Visual de Modelos , Estimulação Luminosa
17.
EMBO J ; 38(24): e102578, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31381180

RESUMO

Exercise stimulates cellular and physiological adaptations that are associated with widespread health benefits. To uncover conserved protein phosphorylation events underlying this adaptive response, we performed mass spectrometry-based phosphoproteomic analyses of skeletal muscle from two widely used rodent models: treadmill running in mice and in situ muscle contraction in rats. We overlaid these phosphoproteomic signatures with cycling in humans to identify common cross-species phosphosite responses, as well as unique model-specific regulation. We identified > 22,000 phosphosites, revealing orthologous protein phosphorylation and overlapping signaling pathways regulated by exercise. This included two conserved phosphosites on stromal interaction molecule 1 (STIM1), which we validate as AMPK substrates. Furthermore, we demonstrate that AMPK-mediated phosphorylation of STIM1 negatively regulates store-operated calcium entry, and this is beneficial for exercise in Drosophila. This integrated cross-species resource of exercise-regulated signaling in human, mouse, and rat skeletal muscle has uncovered conserved networks and unraveled crosstalk between AMPK and intracellular calcium flux.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteômica/métodos , Molécula 1 de Interação Estromal/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Drosophila , Feminino , Humanos , Masculino , Proteínas de Membrana , Camundongos , Músculo Esquelético/metabolismo , Fosforilação , Conformação Proteica , Ratos , Ratos Wistar , Transdução de Sinais , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética
18.
PLoS Pathog ; 17(4): e1009552, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901257

RESUMO

Host genetic variation plays an important role in the structure and function of heritable microbial communities. Recent studies have shown that insects use immune mechanisms to regulate heritable symbionts. Here we test the hypothesis that variation in symbiont density among hosts is linked to intraspecific differences in the immune response to harboring symbionts. We show that pea aphids (Acyrthosiphon pisum) harboring the bacterial endosymbiont Regiella insecticola (but not all other species of symbionts) downregulate expression of key immune genes. We then functionally link immune expression with symbiont density using RNAi. The pea aphid species complex is comprised of multiple reproductively-isolated host plant-adapted populations. These 'biotypes' have distinct patterns of symbiont infections: for example, aphids from the Trifolium biotype are strongly associated with Regiella. Using RNAseq, we compare patterns of gene expression in response to Regiella in aphid genotypes from multiple biotypes, and we show that Trifolium aphids experience no downregulation of immune gene expression while hosting Regiella and harbor symbionts at lower densities. Using F1 hybrids between two biotypes, we find that symbiont density and immune gene expression are both intermediate in hybrids. We propose that in this system, Regiella symbionts are suppressing aphid immune mechanisms to increase their density, but that some hosts have adapted to prevent immune suppression in order to control symbiont numbers. This work therefore suggests that antagonistic coevolution can play a role in host-microbe interactions even when symbionts are transmitted vertically and provide a clear benefit to their hosts. The specific immune mechanisms that we find are downregulated in the presence of Regiella have been previously shown to combat pathogens in aphids, and thus this work also highlights the immune system's complex dual role in interacting with both beneficial and harmful microbes.


Assuntos
Afídeos/microbiologia , Carga Bacteriana/genética , Enterobacteriaceae/imunologia , Imunidade Inata/genética , Simbiose , Animais , Afídeos/classificação , Afídeos/genética , Afídeos/imunologia , Carga Bacteriana/fisiologia , Enterobacteriaceae/classificação , Enterobacteriaceae/citologia , Enterobacteriaceae/genética , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes de Insetos/genética , Variação Genética/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Especificidade da Espécie , Simbiose/genética , Simbiose/imunologia
19.
J Anat ; 243(6): 1066-1068, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37458159

RESUMO

An average hemisphere of the human cerebral cortex contains over 100 individual folds (sulci). Many of these sulci have been overlooked by classic and modern atlases and neuroimaging tools. These sulci also show prominent individual differences: They can be broken into variable "complexes" and some sulci may not be present altogether.


Assuntos
Cérebro , Individualidade , Humanos , Córtex Cerebral , Neuroimagem , Membrana Celular
20.
Insect Mol Biol ; 32(6): 575-582, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243432

RESUMO

Aphids are hosts to diverse viruses and are important vectors of plant pathogens. The spread of viruses is heavily influenced by aphid movement and behaviour. Consequently, wing plasticity (where individuals can be winged or wingless depending on environmental conditions) is an important factor in the spread of aphid-associated viruses. We review several fascinating systems where aphid-vectored plant viruses interact with aphid wing plasticity, both indirectly by manipulating plant physiology and directly through molecular interactions with plasticity pathways. We also cover recent examples where aphid-specific viruses and endogenous viral elements within aphid genomes influence wing formation. We discuss why unrelated viruses with different transmission modes have convergently evolved to manipulate wing formation in aphids and whether this is advantageous for both host and virus. We argue that interactions with viruses are likely shaping the evolution of wing plasticity within and across aphid species, and we discuss the potential importance of these findings for aphid biocontrol.


Los áfidos albergan diversos virus y son vectores de importantes patógenos de plantas. La propagación de virus está fuertemente influenciada por el movimiento y el comportamiento de los áfidos. En consecuencia, la plasticidad de las alas (en la cual algunos individuos desarrollan alas dependiendo de las condiciones ambientales) es un factor importante en la propagación viral asociada a los áfidos. En este documento revisamos varios ejemplos fascinantes en los que virus de plantas transmitidos por áfidos interactúan con la plasticidad fenotípica de las alas, indirectamente manipulando la fisiología de la planta y directamente a través de interacciones moleculares con los mecanismos de plasticidad fenotípica del áfido. También describimos ejemplos recientes que demuestran como algunos virus específicos de áfidos y elementos virales endógenos localizados en los genomas de áfidos influyen en la formación de alas. Últimamente, discutimos por qué virus no relacionados con diferentes modos de transmisión han evolucionado convergentemente para manipular la formación de alas en áfidos y si este fenómeno es beneficioso para el insecto y el virus. Nosotros objetamos que las interacciones con virus están probablemente influenciando la evolución intra- e interespecífica de la plasticidad de las alas en áfidos, y discutimos el potencial de estos hallazgos para el control biológico de los áfidos.


Assuntos
Afídeos , Vírus , Humanos , Animais , Afídeos/fisiologia , Asas de Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA