Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neural Eng ; 19(2)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35234664

RESUMO

Objective. To provide a design analysis and guidance framework for the implementation of concurrent stimulation and sensing during adaptive deep brain stimulation (aDBS) with particular emphasis on artifact mitigations.Approach. We defined a general architecture of feedback-enabled devices, identified key components in the signal chain which might result in unwanted artifacts and proposed methods that might ultimately enable improved aDBS therapies. We gathered data from research subjects chronically-implanted with an investigational aDBS system, Summit RC + S, to characterize and explore artifact mitigations arising from concurrent stimulation and sensing. We then used a prototype investigational implantable device, DyNeuMo, and a bench-setup that accounts for tissue-electrode properties, to confirm our observations and verify mitigations. The strategies to reduce transient stimulation artifacts and improve performance during aDBS were confirmed in a chronic implant using updated configuration settings.Main results.We derived and validated a 'checklist' of configuration settings to improve system performance and areas for future device improvement. Key considerations for the configuration include (a) active instead of passive recharge, (b) sense-channel blanking in the amplifier, (c) high-pass filter settings, (d) tissue-electrode impedance mismatch management, (e) time-frequency trade-offs in the classifier, (f) algorithm blanking and transition rate limits. Without proper channel configuration, the aDBS algorithm was susceptible to limit-cycles of oscillating stimulation independent of physiological state. By applying the checklist, we could optimize each block's performance characteristics within the overall system. With system-level optimization, a 'fast' aDBS prototype algorithm was demonstrated to be feasible without reentrant loops, and with noise performance suitable for subcortical brain circuits.Significance. We present a framework to study sources and propose mitigations of artifacts in devices that provide chronic aDBS. This work highlights the trade-offs in performance as novel sensing devices translate to the clinic. Finding the appropriate balance of constraints is imperative for successful translation of aDBS therapies.Clinical trial:Institutional Review Board and Investigational Device Exemption numbers: NCT02649166/IRB201501021 (University of Florida), NCT04043403/IRB52548 (Stanford University), NCT03582891/IRB1824454 (University of California San Francisco). IDE #180 097.


Assuntos
Estimulação Encefálica Profunda , Algoritmos , Encéfalo , Estimulação Encefálica Profunda/métodos , Retroalimentação , Humanos
2.
Brain Commun ; 3(4): fcab248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34870202

RESUMO

Loss of hand function after cervical spinal cord injury severely impairs functional independence. We describe a method for restoring volitional control of hand grasp in one 21-year-old male subject with complete cervical quadriplegia (C5 American Spinal Injury Association Impairment Scale A) using a portable fully implanted brain-computer interface within the home environment. The brain-computer interface consists of subdural surface electrodes placed over the dominant-hand motor cortex and connects to a transmitter implanted subcutaneously below the clavicle, which allows continuous reading of the electrocorticographic activity. Movement-intent was used to trigger functional electrical stimulation of the dominant hand during an initial 29-weeks laboratory study and subsequently via a mechanical hand orthosis during in-home use. Movement-intent information could be decoded consistently throughout the 29-weeks in-laboratory study with a mean accuracy of 89.0% (range 78-93.3%). Improvements were observed in both the speed and accuracy of various upper extremity tasks, including lifting small objects and transferring objects to specific targets. At-home decoding accuracy during open-loop trials reached an accuracy of 91.3% (range 80-98.95%) and an accuracy of 88.3% (range 77.6-95.5%) during closed-loop trials. Importantly, the temporal stability of both the functional outcomes and decoder metrics were not explored in this study. A fully implanted brain-computer interface can be safely used to reliably decode movement-intent from motor cortex, allowing for accurate volitional control of hand grasp.

3.
Front Hum Neurosci ; 14: 54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292333

RESUMO

The Seventh Annual Deep Brain Stimulation (DBS) Think Tank held on September 8th of 2019 addressed the most current: (1) use and utility of complex neurophysiological signals for development of adaptive neurostimulation to improve clinical outcomes; (2) Advancements in recent neuromodulation techniques to treat neuropsychiatric disorders; (3) New developments in optogenetics and DBS; (4) The use of augmented Virtual reality (VR) and neuromodulation; (5) commercially available technologies; and (6) ethical issues arising in and from research and use of DBS. These advances serve as both "markers of progress" and challenges and opportunities for ongoing address, engagement, and deliberation as we move to improve the functional capabilities and translational value of DBS. It is in this light that these proceedings are presented to inform the field and initiate ongoing discourse. As consistent with the intent, and spirit of this, and prior DBS Think Tanks, the overarching goal is to continue to develop multidisciplinary collaborations to rapidly advance the field and ultimately improve patient outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA