Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 65(9): 100608, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39069231

RESUMO

Eicosanoids are a class of molecules derived from C20 polyunsaturated fatty acids (PUFAs) that play a vital role in mammalian and insect biological systems, including development, reproduction, and immunity. Recent research has shown that insects have significant but lower levels of C20 PUFAs in circulation in comparison to C18 PUFAs. It has been previously hypothesized in insects that eicosanoids are synthesized from C18 precursors, such as linoleic acid (LA), to produce downstream eicosanoids. In this study, we show that introduction of arachidonic acid (AA) stimulates production of cyclooxygenase, lipoxygenase, and cytochrome P450-derived eicosanoids. Downstream immune readouts showed that LA stimulates phagocytosis by hemocytes, while both LA and AA stimulate increased antimicrobial peptide production when D. melanogaster is exposed to a heat-killed bacterial pathogen. In totality, this work identifies PUFAs that are involved in insect immunity and adds evidence to the notion that Drosophila utilizes immunostimulatory lipid signaling to mitigate bacterial infections. Our understanding of immune signaling in the fly and its analogies to mammalian systems will increase the power and value of Drosophila as a model organism in immune studies.


Assuntos
Drosophila melanogaster , Eicosanoides , Ácidos Graxos Insaturados , Animais , Drosophila melanogaster/imunologia , Eicosanoides/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fagocitose/efeitos dos fármacos , Hemócitos/metabolismo , Hemócitos/imunologia , Ácido Linoleico/farmacologia , Ácido Linoleico/metabolismo , Ácido Araquidônico/metabolismo
2.
PLoS Pathog ; 18(4): e1010424, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446920

RESUMO

Fatty acid-and retinol-binding proteins (FARs) belong to a unique family of excreted/secreted proteins (ESPs) found exclusively in nematodes. Much of our understanding of these proteins, however, is limited to their in vitro binding characteristics toward various fatty acids and retinol and has provided little insight into their in vivo functions or mechanisms. Recent research, however, has shown that FARs elicit an immunomodulatory role in plant and animal model systems, likely by sequestering lipids involved in immune signaling. This alludes to the intricate relationship between parasitic nematode effectors and their hosts.


Assuntos
Nematoides , Proteínas de Ligação ao Retinol , Animais , Ácidos Graxos/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Nematoides/genética , Nematoides/metabolismo , Proteínas de Ligação ao Retinol/genética , Proteínas de Ligação ao Retinol/metabolismo , Vitamina A/metabolismo
3.
PLoS Pathog ; 17(10): e1010027, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714893

RESUMO

Parasitic nematodes cause significant morbidity and mortality globally. Excretory/secretory products (ESPs) such as fatty acid- and retinol- binding proteins (FARs) are hypothesized to suppress host immunity during nematode infection, yet little is known about their interactions with host tissues. Leveraging the insect parasitic nematode, Steinernema carpocapsae, we describe here the first in vivo study demonstrating that FARs modulate animal immunity, causing an increase in susceptibility to bacterial co-infection. Moreover, we show that FARs dampen key components of the fly immune response including the phenoloxidase cascade and antimicrobial peptide (AMP) production. Our data also reveal that FARs deplete lipid signaling precursors in vivo as well as bind to these fatty acids in vitro, suggesting that FARs elicit their immunomodulatory effects by altering the availability of lipid signaling molecules necessary for an efficient immune response. Collectively, these data support a complex role for FARs in immunosuppression in animals and provide detailed mechanistic insight into parasitism in phylum Nematoda.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Infecções por Nematoides/imunologia , Proteínas de Ligação ao Retinol/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Nematoides , Infecções por Nematoides/parasitologia
4.
Front Immunol ; 14: 1122451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006283

RESUMO

A key aspect of parasitic nematode infection is the nematodes' ability to evade and/or suppress host immunity. This immunomodulatory ability is likely driven by the release of hundreds of excretory/secretory proteins (ESPs) during infection. While ESPs have been shown to display immunosuppressive effects on various hosts, our understanding of the molecular interactions between individual proteins released and host immunity requires further study. We have recently identified a secreted phospholipase A2 (sPLA2) released from the entomopathogenic nematode (EPN) Steinernema carpocapsae we have named Sc-sPLA2. We report that Sc-sPLA2 increased mortality of Drosophila melanogaster infected with Streptococcus pneumoniae and promoted increased bacterial growth. Furthermore, our data showed that Sc-sPLA2 was able to downregulate both Toll and Imd pathway-associated antimicrobial peptides (AMPs) including drosomycin and defensin, in addition to suppressing phagocytosis in the hemolymph. Sc-sPLA2 was also found to be toxic to D. melanogaster with the severity being both dose- and time-dependent. Collectively, our data highlighted that Sc-sPLA2 possessed both toxic and immunosuppressive capabilities.


Assuntos
Nematoides , Fosfolipases A2 Secretórias , Animais , Drosophila melanogaster , Hemócitos , Imunidade Humoral , Interações Hospedeiro-Parasita , Nematoides/microbiologia , Nematoides/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA