Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Small ; : e2400778, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747048

RESUMO

Herein, it is demonstrated that the toxic effect of gold nanoparticles (Au NPs) on three different cancer cell lines (U-118 and LN-299 glioblastoma and HCT-116 colon) depends on their absorption dynamics by cells, related to the shapes of the NPs. This hypothesis is confirmed by showing that i) based on refractive index (RI) values, typical for cell components and gold nanoparticles, it is possible to show the absorption dynamics and accumulation locations of the latter ones inside and outside of the cells. Moreover, ii) the saturation of the accumulated Au NPs volume in the cells depends on the nanoparticle shape and is reached in the shortest time for star-shaped Au NPs (AuS NPs) and in the longest time for spherical Au NPs (AuSph NPs) and on the cancer cells, where the longest and the shortest saturation are noticed for HCT-116 and LN-229 cells, respectively. A physical model of Au NPs absorption dynamics is proposed, where the diameter and shape of the Au NPs are used as parameters. The obtained theoretical data are consistent with experimental data in 85-98%.

2.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348549

RESUMO

Enhancing the effectiveness of colorectal cancer treatment is highly desirable. Radiation-based anticancer therapy-such as proton therapy (PT)-can be used to shrink tumors before subsequent surgical intervention; therefore, improving the effectiveness of this treatment is crucial. The addition of noble metal nanoparticles (NPs), acting as radiosensitizers, increases the PT therapeutic effect. Thus, in this paper, the effect of novel, gold-platinum nanocauliflowers (AuPt NCs) on PT efficiency is determined. For this purpose, crystalline, 66-nm fancy shaped, bimetallic AuPt NCs were synthesized using green chemistry method. Then, physicochemical characterization of the obtained AuPt NCs by transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDS), and UV-Vis spectra measurements was carried out. Fully characterized AuPt NCs were placed into a cell culture of colon cancer cell lines (HCT116, SW480, and SW620) and a normal colon cell line (FHC) and subsequently subjected to proton irradiation with a total dose of 15 Gy. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) test, performed after 18-h incubation of the irradiated cell culture with AuPt NCs, showed a significant reduction in cancer cell viability compared to normal cells. Thus, the radio-enhancing features of AuPt NCs indicate their potential application for the improvement in effectiveness of anticancer proton therapy.


Assuntos
Neoplasias do Colo/radioterapia , Ouro/química , Nanopartículas Metálicas/administração & dosagem , Platina/química , Terapia com Prótons/métodos , Radiossensibilizantes/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Neoplasias do Colo/patologia , Química Verde , Células HCT116 , Humanos , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Prótons , Radiossensibilizantes/química , Espectrometria por Raios X
3.
Int J Mol Sci ; 21(23)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260340

RESUMO

Herein, we propose newly designed and synthesized gold nanopeanuts (Au NPes) as supports for cisplatin (cPt) immobilization, dedicated to combined glioblastoma nano-chemo-radiotherapy. Au NPes offer a large active surface, which can be used for drugs immobilization. Transmission electron microscopy (TEM) revealed that the size of the synthesized Au NPes along the longitudinal axis is ~60 nm, while along the transverse axis ~20 nm. Raman, thermogravimetric analysis (TGA) and differential scanning calorimetry (DCS) measurements showed, that the created nanosystem is stable up to a temperature of 110 °C. MTT assay revealed, that the highest cell mortality was observed for cell lines subjected to nano-chemo-radiotherapy (20-55%). Hence, Au NPes with immobilized cPt (cPt@AuNPes) are a promising nanosystem to improve the therapeutic efficiency of combined nano-chemo-radiotherapy.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Cisplatino/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Ouro/química , Nanopartículas Metálicas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Glioblastoma/patologia , Humanos , Nanopartículas Metálicas/ultraestrutura , Análise Espectral Raman
4.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155840

RESUMO

Colon cancer constitutes 33% of all cancer cases in humans and the majority of patients with metastatic colon cancer still have poor prognosis. An important role in cancer development is the communication between cancer and normal cells. This may occur, among others, through extracellular vesicles (including microvesicles) (MVs), which are being released by both types of cells. MVs may regulate a diverse range of biological processes and are considered as useful cancer biomarkers. Herein, we show that similarity in the general chemical composition between colon cancer cells and their corresponding tumor-derived microvesicles (TMVs) does exist. These results have been confirmed by spectroscopic methods for four colon cancer cell lines: HCT116, LoVo, SW480, and SW620 differing in their aggressiveness/metastatic potential. Our results show that Raman and Fourier Transform InfraRed (FTIR) analysis of the cell lines and their corresponding TMVs did not differ significantly in the characterization of their chemical composition. However, hierarchical cluster analysis of the data obtained by both of the methods revealed that only Raman spectroscopy provides results that are in line with the molecular classification of colon cancer, thus having potential clinical relevance.


Assuntos
Biomarcadores Tumorais/análise , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/patologia , Neoplasias do Colo/química , Neoplasias do Colo/patologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Humanos , Células Tumorais Cultivadas
5.
Angew Chem Int Ed Engl ; 59(50): 22763-22770, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32750196

RESUMO

Ru/Al2 O3 is a highly stable, but less active catalyst for methanation reactions. Herein we report an effective approach to significantly improve its performance in the methanation of CO2 /H2 mixtures. Highly active and stable Ru/γ-Al2 O3 catalysts were prepared by high-temperature treatment in the reductive reaction gas. Operando/in situ spectroscopy and STEM imaging reveals that the strongly improved activity, by factors of 5 and 14 for CO and CO2 methanation, is accompanied by a flattening of the Ru nanoparticles and the formation of highly basic hydroxylated alumina sites. We propose a modification of the metal-support interactions (MSIs) as the origin of the increased activity, caused by modification of the Al2 O3 surface in the reductive atmosphere and an increased thermal mobility of the Ru nanoparticles, allowing their transfer to modified surface sites.

6.
J Am Chem Soc ; 141(13): 5201-5210, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30852893

RESUMO

Single-atom catalysts are often considered as the ultimate design principle for supported catalysts, due to their unique geometric and electronic properties and their highly efficient use of precious materials. Here, we report a single-atom catalyst, Cu/UiO-66, prepared by a covalent attachment of Cu atoms to the defect sites at the zirconium oxide clusters of the metal-organic framework (MOF) UiO-66. Kinetic measurements show this catalyst to be highly active and stable under realistic reaction conditions for two important test reactions, the oxidation of CO at temperatures up to 350 °C, which makes this interesting for application in catalytic converters for cars, and for CO removal via selective oxidation of CO in H2-rich feed gases, where it shows an excellent selectivity of about 100% for CO oxidation. Time-resolved operando spectroscopy measurements indicate that the activity of the catalyst is associated with atomically dispersed, positively charged ionic Cu species. Density functional theory (DFT) calculations in combination with experimental data show that Cu binds to the MOF by -OH/-OH2 ligands capping the defect sites at the Zr oxide clusters.

7.
Nanotechnology ; 30(1): 015601, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30359329

RESUMO

Nickel-silver core-shell (Ni@Ag) nanoparticles (NPs) were formed in a two-step process: (1) the formation of a dispersion of Ni NPs; and (2) the transmetalation (galvanic displacement) reaction, where the surface of the Ni NPs acted as the reducing agent of Ag ions. Ni NPs were synthesized by the 'wet' chemical method, i.e., by the reduction of metal ions by using NaBH4 as the reducing agent. The influence of the concentration of polymeric stabilizer, reducing agent and Ag precursor on the properties of synthesized NPs was evaluated. In the optimal condition of synthesis, Ni@Ag NPs with about 50 and 210 nm-diameter Ni core coated with a thin (∼10-20 nm) Ag shell, were obtained. Finally, the stability of the synthesized spherical-shaped Ni@Ag NPs was tested and the results indicate long-term stability against aggregation and Ni oxidation. Thus, the resulting NPs are promising candidates for application in electronic devices, e.g., as components of conductive inks or pastes.

8.
Int J Mol Sci ; 20(20)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658649

RESUMO

Gold nanostars (AuS NPs) are a very attractive nanomaterial, which is characterized by high effective transduction of the electromagnetic radiation into heat energy. Therefore, AuS NPs can be used as photosensitizers in photothermal therapy (PTT). However, understanding the photothermal conversion efficiency in nanostars is very important to select the most appropriate shape and size of AuS NPs. Therefore, in this article, the synthesis of AuS NPs with different lengths of star arms for potential application in PTT was investigated. Moreover, the formation mechanism of these AuS NPs depending on the reducer concentration is proposed. Transmission electron microscopy (TEM) with selected area diffraction (SEAD) and X-ray diffraction (X-Ray) showed that all the obtained AuS NPs are crystalline and have cores with similar values of the diagonal (parameter d), from 140 nm to 146 nm. However, the widths of the star arm edges (parameter c) and the lengths of the arms (parameter a) vary between 3.75 nm and 193 nm for AuS1 NPs to 6.25 nm and 356 nm for AuS4 NPs. Ultraviolet-visible (UV-Vis) spectra revealed that, with increasing edge widths and lengths of the star arms, the surface plasmon resonance (SPR) peak is shifted to the higher wavelengths, from 640 nm for AuS1 NPs to 770 nm for AuS4 NPs. Moreover, the increase of temperature in the AuS NPs solutions as well as the values of calculated photothermal efficiency grew with the elongation of the star arms. The potential application of AuS NPs in the PTT showed that the highest decrease of viability, around 75%, of cells cultured with AuS NPs and irradiated by lasers was noticed for AuS4 NPs with the longest arms, while the smallest changes were visible for gold nanostars with the shortest arms. The present study shows that photothermal properties of AuS NPs depend on edge widths and lengths of the star arms and the values of photothermal efficiency are higher with the increase of the arm lengths, which is correlated with the reducer concentration.


Assuntos
Antineoplásicos/química , Ouro/química , Nanopartículas Metálicas/química , Fármacos Fotossensibilizantes/química , Fototerapia/métodos , Linhagem Celular Tumoral , Neoplasias do Colo , Humanos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Ressonância de Plasmônio de Superfície , Temperatura , Nanomedicina Teranóstica , Difração de Raios X
9.
Aerobiologia (Bologna) ; 34(4): 525-538, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532346

RESUMO

In this study, the morphology and chemical composition of pollen grains of six birch species (Betula utilis Doorenbos, B. dahurica, B. maximowicziana, B. pendula, B. pubescens and B. humilis) were examined to verify which of these features allow distinguishing them in a more unambiguous way. For this purpose, scanning electron microscopy and light microscopy, as well as Fourier transform infrared (FTIR) spectroscopy and curve-fitting analysis of amide I profile, were performed. The microscopy images show that the pollen grains of B. pubescens, B. pendula and B. humilis are similar in diameter and significantly smaller than those of others species, with the largest diameter observed for B. utilis Doorenbos. However, the results obtained from FTIR spectroscopy indicate that the chemical compositions of B. pubescens and B. pendula are similar, but B. humilis is outlaying. Summarizing, it is not possible to unambiguously state, which feature or which technique is the best for differentiating between the six chosen birch species. However, the study showed that both techniques have potential for identification of birch pollen species.

10.
Int J Mol Sci ; 19(12)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551592

RESUMO

Nanoparticles have unique, size-dependent properties, which means they are widely used in various branches of industry. The ability to control the properties of nanoparticles makes these nanomaterials very interesting for medicine and pharmacology. The application of nanoparticles in medicine is associated with the design of specific nanostructures, which can be used as novel diagnostic and therapeutic modalities. There are a lot of applications of nanoparticles, e.g., as drug delivery systems, radiosensitizers in radiation or proton therapy, in bioimaging, or as bactericides/fungicides. This paper aims to introduce the characteristics of noble metal-based nanoparticles with particular emphasis on their applications in medicine and related sciences.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Prata/química , Nanomedicina Teranóstica , Sistemas de Liberação de Medicamentos , Humanos , Imagem Molecular
11.
Bioprocess Biosyst Eng ; 39(8): 1213-23, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27083587

RESUMO

Green synthesis method using camomile extract was applied to synthesize silver nanoparticles to tune their antibacterial properties merging the synergistic effect of camomile and Ag. Scanning transmission electron microscopy revealed that camomile extract (CE) consisted of porous globular nanometer sized structures, which were a perfect support for Ag nanoparticles. The Ag nanoparticles synthesized with the camomile extract (AgNPs/CE) of 7 nm average sizes, were uniformly distributed on the CE support, contrary to the pure Ag nanoparticles synthesized with glucose (AgNPs/G), which were over 50 nm in diameter and strongly agglomerated. The energy dispersive X-ray spectroscopy chemical analysis showed that camomile terpenoids act as a capping and reducing agent being adsorbed on the surface of AgNPs/CE enabling their reduction from Ag(+) and preventing them from agglomeration. Fourier transform infrared and ultraviolet-visible spectroscopy measurements confirmed these findings, as the spectra of AgNPs/CE, compared to pure CE, did not contain the 1109 cm(-1) band, corresponding to -C-O groups of terpenoids and the peaks at 280 and 320 nm, respectively. Antibacterial tests using four bacteria strains showed that the AgNPs/CE performed five times better compared to CE AgNPs/G samples, reducing totally all the bacteria in 2 h.


Assuntos
Antibacterianos/farmacologia , Camomila/química , Coloides , Nanopartículas Metálicas/química , Prata/química , Terpenos/química , Antibacterianos/síntese química , Testes de Sensibilidade Microbiana , Oxirredução , Tamanho da Partícula , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Água
12.
Phys Chem Chem Phys ; 15(5): 1417-30, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23089876

RESUMO

The interaction of metal oxides with gases is very important for the operation of energy devices such as fuel cells and gas sensors, and also relevant for materials synthesis and processing. The electronic transport properties of metal oxides for the aforementioned devices strongly depend on the chemistry of these gases and on the presence or absence of defects on the surface and in the bulk. The Debye screening length is in this respect a material specific property which becomes particularly significant when the material is comprised of nanoparticles. In the present study, poly-crystalline TiO(2), ZnO and SnO(2) nanoparticles were synthesized by a high temperature flame spray combustion process and investigated for their interaction with hydrogen. The chemistry of the reduced and oxidized surfaces of these metal oxides, where the interaction with gases takes place, was investigated in detail with X-ray photoelectron spectroscopy (XPS). The transitions found near E(F) with XPS are consistent with those found by diffuse reflectance spectroscopy (DRS) and were assigned to surface states originating from non-equilibrium oxygen vacancies. We show how the non-stoichiometric character of the metal oxide surface constitutes electronic surface defects, in particular oxygen vacancies which allow for additional transitions near the Fermi energy (E(F)). The concentration of these surface defects can be strongly reduced by thermal after-treatment under air or increased by Ar(+)-sputtering, after which significant spectral features appear near E(F). Such prominent changes are particularly observed for TiO(2) and SnO(2), whereas the stoichiometry of the ZnO surface seems to be less responsive to such reducing and oxidizing conditions. Pronounced changes of the electrical conductivity upon changing from reducing to oxidizing conditions at elevated temperatures were monitored by electrochemical impedance spectroscopy (EIS). The lowering of the potential barrier for the charge transport particularly at lower temperatures already at reducing conditions is confirmed. The impedance response indicates that charge transfer is governed predominantly by one single process, i.e. by interaction of surface-like states localized within depletion layer with gas molecules. This implies that the free charge carriers in the material are determined by the intrinsic property like non-stoichiometry. Gas sensors made from such FSS nanoparticulate metal oxides showed well developed sensing characteristics of the hydrogen sensing at moderate temperatures.

13.
Phys Chem Chem Phys ; 14(16): 5518-26, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22433948

RESUMO

The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface.


Assuntos
Dióxido de Carbono/química , Hidrogênio/química , Magnésio/química , Metano/síntese química , Níquel/química , Catálise , Hidrogenação , Metano/química , Tamanho da Partícula , Propriedades de Superfície
14.
J Nanosci Nanotechnol ; 12(8): 6401-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22962756

RESUMO

Nanoscaled Fe2O3 powders as candidates for gas sensing material for hydrogen detection were synthesized by the high temperature flame spray assisted combustion of ferrocene dissolved in benzene. X-ray diffraction (XRD) and selected area electron diffraction (SAED) show that the as prepared nanopowder consists of maghemite (gamma-Fe2O3) with low crystallinity. Thermal post-treatment causes a phase transformation towards hematite (alpha-Fe2O3) accompanied by an increase in the crystallinity. Upon exposure to air and hydrogen at elevated temperatures, both phases show a significant variation of conductivity and activation energy-as evidenced by impedance spectra-and thus a favorable sensor response, surpassing even that of flame-synthesized nanocrystalline tin dioxide. The conductivity has been identified as of electronic origin, affected by trap states located in the region adjacent to grain boundaries. Quantitative analysis of the impedance spectra with equivalent circuits shows that the conductivity is thermally activated and affected by the interaction of hydrogen with the sensor material. The calculated Debye screening length of gamma-Fe2O3 and alpha-Fe2O3 is about 27 nm and 16 nm, respectively, what contributes significantly to the sensitivity of the material. Gamma-Fe2O3 and alpha-Fe2O3 exhibit high sensor response towards hydrogen in a wide concentration range. Gamma-Fe2O3 shows n-type semiconducting behavior up to 573 K. Alpha-Fe2O3 shows p-type semiconducting behavior, as reflected in the dynamic changes of the resistivity. For both sensor materials, 523 K was the optimal operating temperature.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 121029, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217265

RESUMO

Polycystic ovarian syndrome (PCOS) is a disease, which causes infertility in women. The factors for the development of the disease are still not well understood and diagnostic methods need to be improved. Therefore, in this study, Raman spectroscopy as a potential diagnostic tool, was investigated and spectra of blood serum were collected from PCOS and healthy women. The obtained spectra showed distinct changes in intensities as well as shift of peaks for the blood serum collected from PCOS compared to healthy individuals. Partial Last Square (PLS) analysis and Principal Component Analysis (PCA) allowed to determine that Raman shifts of amides (1500 - 1700 cm-1) and CH2, CH3 lipid groups (2700 - 3000 cm-1), could be thus used as potential PCOS markers. Furthermore, the Pearson correlation test showed a strong correlation between hormones (lutropin (LH), prolactin (PRL), follicle-stimulating (FSH), dehydroepiandrosterone (DHEAS), thyroid-stimulating (TSH), Estradiol) and lipids, as well as between hormones and protein functional groups in PCOS women, compared to the control. These results show, that the lipid and protein balance could be potentially applied as a helpful PCOS marker in Raman spectra.


Assuntos
Síndrome do Ovário Policístico , Feminino , Hormônio Foliculoestimulante , Humanos , Análise Multivariada , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/metabolismo , Soro/metabolismo , Análise Espectral Raman , Testosterona
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 121006, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35151168

RESUMO

Cholangiocarcinoma (CCA) is a type of cancer, which 5-year survival is lower than 20 %, and which is detected mostly in advanced stage of the disease. Unfortunately, there are no diagnostic tools, which could show changes in the body indicating the development of the disease. Therefore, in this study, we investigate Raman spectroscopy as a promising analytical tool in medical diagnostics and as a method, which would allow to distinguish between healthy patients and patients suffering from cholangiocarcinoma. The obtained Raman spectra showed, that lower intensities of peaks corresponding to amino acids and proteins, as well as higher intensities of peaks originating from lipids vibrations were observed in healthy individuals in comparison with cancer patients. Moreover, Partial Last Square (PLS), Principal Component Analysis (PCA) and Hierarchical Component Analysis (HCA) of Raman spectra indicate that the ranges between 800 cm-1 and 1800 cm-1, 3477 cm-1 -3322 cm-1 and 1394 cm-1 -1297 cm-1 allow to distinguish cancer patients from healthy ones. The obtained results showed, that Raman spectroscopy is a good candidate, to become in future one of the diagnostic tools of Cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/diagnóstico , Ductos Biliares Intra-Hepáticos , Colangiocarcinoma/diagnóstico , Humanos , Análise Multivariada , Análise de Componente Principal , Análise Espectral Raman/métodos
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 274: 121119, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35305519

RESUMO

The formation of the uterus lining, i.e. the endometrium, outside the uterus (ex. in the abdominal cavity,ovaries,or anywhere in the body) is called endometriosis. The presence of endometrial tissue present in the ovaries, thickens after menstruation, leading to menstrual-like bleeding and to the formation of chocolate cyst (Endometrioma) because of the accumulation of old, brown blood in the ovary. It is still unknown, what triggers the development ofendometrioma. However,it leads to excessive bleeding during menstrual periods or abnormal bleeding between periods and infertility. Endometriosis is often first diagnosed in those who seek medical attention for infertility. Therefore, new markers of endometrioma as well as new methods of its diagnosis are sought. In this study we used Raman spectra of serum collected from 50 healthy women and 50 women suffering from endometriosis. The obtained Raman data were used in multivariateanalysis to determine the Raman range, which can be used for endometriomadiagnostics. Partial Least Square (PLS), Principal Component Analysis (PCA) and Hierarchical Component Analysis (HCA) showed, that it is possible to distinguish between the serum collected from healthy and un-healthy women using the Raman range between 800 cm-1 and 1800 cm-1 and between 2956 cm-1 and 2840 cm-1, while the first range corresponds to the fingerprint region and the second one to lipids vibrations. Consequently, the Pearson correlation test showeda significantpositive correlation betweenvaluesoflipidintensity in Raman spectra and volume of endometriomas. Summarizing, Raman spectroscopy can be a helpful tool in endometrioma diagnosis and the lipid vibrations are candidates for being a spectroscopic marker of the disease being studied.


Assuntos
Endometriose , Infertilidade , Endometriose/diagnóstico , Feminino , Humanos , Análise de Componente Principal , Soro , Análise Espectral Raman
18.
Cancers (Basel) ; 14(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497386

RESUMO

Nano-sized radiosensitizers can be used to increase the effectiveness of radiation-based anticancer therapies. In this study, bimetallic, ~30 nm palladium-platinum nanoparticles (PdPt NPs) with different nanostructures (random nano-alloy NPs and ordered core-shell NPs) were prepared. Scanning transmission electron microscopy (STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS), zeta potential measurements, and nanoparticle tracking analysis (NTA) were used to provide the physicochemical characteristics of PdPt NPs. Then, PdPt NPs were added to the cultures of colon cancer cells and normal colon epithelium cells in individually established non-toxic concentrations and irradiated with the non-harmful dose of X-rays/protons. Cell viability before and after PdPt NPs-(non) assisted X-ray/proton irradiation was evaluated by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. Flow cytometry was used to assess cell apoptosis. The results showed that PdPt NPs significantly enhanced the effect of irradiation on cancer cells. It was noticed that nano-alloy PdPt NPs possess better radiosensitizing properties compared to PtPd core-shell NPs, and the combined effect against cancer cells was c.a. 10% stronger for X-ray than for proton irradiation. Thus, the radio-enhancing features of differently structured PdPt NPs indicate their potential application for the improvement of the effectiveness of radiation-based anticancer therapies.

19.
Infect Drug Resist ; 15: 851-871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281576

RESUMO

Background: Extracellular polymeric substances (EPS) produced by bacteria, as they form a biofilm, determine the stability and viscoelastic properties of biofilms and prevent antibiotics from penetrating this multicellular structure. To date, studies demonstrated that an appropriate optimization of the chemistry and morphology of nanotherapeutics might provide a favorable approach to control their interaction with EPS and/or diffusion within the biofilm matrix. Targeting the biofilms' EPS, which in certain conditions can adopt liquid crystal structure, was demonstrated to improve the anti-biofilm activity of antibiotics and nanoparticles. A similar effect is achievable by interfering EPS' production by mucoactive agents, such as N-acetyl-cysteine (NAC). In our previous study, we demonstrated the nanogram efficiency of non-spherical gold nanoparticles, which due to their physicochemical features, particularly morphology, were noted to be superior in antimicrobial activity compared to their spherical-shaped counterparts. Methods: To explore the importance of EPS matrix modulation in achieving a suitable efficiency of peanut-shaped gold nanoparticles (AuP NPs) against biofilms produced by Pseudomonas aeruginosa strains isolated from cystic fibrosis patients, fluorescence microscopy, as well as resazurin staining were employed. Rheological parameters of AuP NPs-treated biofilms were investigated by rotational and creep-recovery tests using a rheometer in a plate-plate arrangement. Results: We demonstrated that tested nanoparticles significantly inhibit the growth of mono- and mixed-species biofilms, particularly when combined with NAC. Notably, gold nanopeanuts were shown to decrease the viscosity and increase the creep compliance of Pseudomonas biofilm, similarly to EPS-targeting NAC. Synergistic activity of AuP NPs with tobramycin was also observed, and the AuP NPs were able to eradicate bacteria within biofilms formed by tobramycin-resistant isolates. Conclusion: We propose that peanut-shaped gold nanoparticles should be considered as a potent therapeutic agent against Pseudomonas biofilms.

20.
Pharmaceutics ; 13(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34684019

RESUMO

Noble metal nanoparticles, such as gold (Au NPs), platinum (Pt NPs), or palladium (Pd NPs), due to their highly developed surface, stability, and radiosensitizing properties, can be applied to support proton therapy (PT) of cancer. In this paper, we investigated the potential of bimetallic, c.a. 30 nm PtAu and PdAu nanocomplexes, synthesized by the green chemistry method and not used previously as radiosensitizers, to enhance the effect of colorectal cancer PT in vitro. The obtained nanomaterials were characterized by scanning transmission electron microscopy (STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS), UV-Vis spectroscopy, and zeta potential measurements. The effect of PtAu and PdAu NPs in PT was investigated on colon cancer cell lines (SW480, SW620, and HCT116), as well as normal colon epithelium cell line (FHC). These cells were cultured with both types of NPs and then irradiated by proton beam with a total dose of 15 Gy. The results of the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) test showed that the NPs-assisted PT resulted in a better anticancer effect than PT used alone; however, there was no significant difference in the radiosensitizing properties between tested nanocomplexes. The MTS results were further verified by defining the cell death as apoptosis (Annexin V binding assay). Furthermore, the data showed that such a treatment was more selective for cancer cells, as normal cell viability was only slightly affected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA