Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(22): e2219216120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216514

RESUMO

The assembly of the ß-amyloid peptide (Aß) to form oligomers and fibrils is closely associated with the pathogenesis and progression of Alzheimer's disease. Aß is a shape-shifting peptide capable of adopting many conformations and folds within the multitude of oligomers and fibrils the peptide forms. These properties have precluded detailed structural elucidation and biological characterization of homogeneous, well-defined Aß oligomers. In this paper, we compare the structural, biophysical, and biological characteristics of two different covalently stabilized isomorphic trimers derived from the central and C-terminal regions Aß. X-ray crystallography reveals the structures of the trimers and shows that each trimer forms a ball-shaped dodecamer. Solution-phase and cell-based studies demonstrate that the two trimers exhibit markedly different assembly and biological properties. One trimer forms small soluble oligomers that enter cells through endocytosis and activate capase-3/7-mediated apoptosis, while the other trimer forms large insoluble aggregates that accumulate on the outer plasma membrane and elicit cellular toxicity through an apoptosis-independent mechanism. The two trimers also exhibit different effects on the aggregation, toxicity, and cellular interaction of full-length Aß, with one trimer showing a greater propensity to interact with Aß than the other. The studies described in this paper indicate that the two trimers share structural, biophysical, and biological characteristics with oligomers of full-length Aß. The varying structural, assembly, and biological characteristics of the two trimers provide a working model for how different Aß trimers can assemble and lead to different biological effects, which may help shed light on the differences among Aß oligomers.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Conformação Proteica , Cristalografia por Raios X , Membrana Celular/metabolismo , Fragmentos de Peptídeos/química
2.
Pept Sci (Hoboken) ; 116(2)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38644932

RESUMO

Monoclonal antibodies (mAbs) that target the P-amyloid peptide (Aß) are important Alzheimer's disease research tools and are now being used as Alzheimer's disease therapies. Conformation-specific mAbs that target oligomeric and fibrillar Aß assemblies are of particular interest, as these assemblies are associated with Alzheimer's disease pathogenesis and progression. This paper reports the generation of rabbit mAbs against two different triangular trimers derived from Aß. These antibodies are the first mAbs generated against Aß oligomer mimics in which the high-resolution structures of the oligomers are known. We describe the isolation of the mAbs using single B-cell sorting of peripheral blood mononuclear cells (PBMCs) from immunized rabbits, the selectivity of the mAbs for the triangular trimers, the immunoreactivity of the mAbs with aggregated Aß42, and the immunoreactivity of the mAbs in brain tissue from the 5xFAD Alzheimer's disease mouse model. The characterization of these mAbs against structurally defined trimers derived from Aß enhances understanding of antibody-amyloid recognition and may benefit the development of diagnostics and immunotherapies in Alzheimer's disease.

3.
ACS Cent Sci ; 10(1): 104-121, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38292607

RESUMO

Antibodies that target the ß-amyloid peptide (Aß) and its associated assemblies are important tools in Alzheimer's disease research and have emerged as promising Alzheimer's disease therapies. This paper reports the creation and characterization of a triangular Aß trimer mimic composed of Aß17-36 ß-hairpins and the generation and study of polyclonal antibodies raised against the Aß trimer mimic. The Aß trimer mimic is covalently stabilized by three disulfide bonds at the corners of the triangular trimer to create a homogeneous oligomer. Structural, biophysical, and cell-based studies demonstrate that the Aß trimer mimic shares characteristics with oligomers of full-length Aß. X-ray crystallography elucidates the structure of the trimer and reveals that four copies of the trimer assemble to form a dodecamer. SDS-PAGE, size exclusion chromatography, and dynamic light scattering reveal that the trimer also forms higher-order assemblies in solution. Cell-based toxicity assays show that the trimer elicits LDH release, decreases ATP levels, and activates caspase-3/7 mediated apoptosis. Immunostaining studies on brain slices from people who lived with Alzheimer's disease and people who lived with Down syndrome reveal that the polyclonal antibodies raised against the Aß trimer mimic recognize pathological features including different types of Aß plaques and cerebral amyloid angiopathy.

4.
Environ Pollut ; 356: 124283, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823546

RESUMO

Alaska contains over 600 formerly used defense (FUD) sites, many of which serve as point sources of pollution. These sites are often co-located with rural communities that depend upon traditional subsistence foods, especially lipid-rich animals that bioaccumulate and biomagnify persistent organic pollutants (POPs). Many POPs are carcinogenic and endocrine-disrupting compounds that are associated with adverse health outcomes. Therefore, elevated exposure to POPs from point sources of pollution may contribute to disproportionate incidence of disease in arctic communities. We investigated PCB concentrations and the health implications of POP exposure in sentinel fishes collected near the Northeast Cape FUD site on Sivuqaq (St. Lawrence Island), Alaska. Sivuqaq residents are almost exclusively Yupik and rely on subsistence foods. At the request of the Sivuqaq community, we examined differential gene expression and developmental pathologies associated with exposure to POPs originating at the Northeast Cape FUD site. We found significantly higher levels of PCBs in Alaska blackfish (Dallia pectoralis) collected from contaminated sites downstream of the FUD site compared to fish collected from upstream reference sites. We compared transcriptomic profiles and histopathologies of these same blackfish. Blackfish from contaminated sites overexpressed genes involved in ribosomal and FoxO signaling pathways compared to blackfish from reference sites. Contaminated blackfish also had significantly fewer thyroid follicles and smaller pigmented macrophage aggregates. Conversely, we found that ninespine stickleback (Pungitius pungitius) from contaminated sites exhibited thyroid follicle hyperplasia. Despite our previous research reporting transcriptomic and endocrine differences in stickleback from contaminated vs. reference sites, we did not find significant differences in kidney or gonadal histomorphologies. Our results demonstrate that contaminants from the Northeast Cape FUD site are associated with altered gene expression and thyroid development in native fishes. These results are consistent with our prior work demonstrating disruption of the thyroid hormone axis in Sivuqaq residents.

5.
Pept Sci (Hoboken) ; 115(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36778914

RESUMO

Peptide vaccines and immunotherapies against aggregating proteins involved in the pathogenesis and progression of Alzheimer's disease (AD) - the ß-amyloid peptide (Aß) and tau - are promising therapeutic avenues against AD. Two decades of effort has led to the controversial FDA approval of the monoclonal antibody Aducanumab (Aduhelm), which has subsequentially sparked the revival and expedited review of promising monoclonal antibody immunotherapies that target Aß. In this review, we explore the development of Aß and tau peptide vaccines and immunotherapies with monoclonal antibodies in clinical trials against AD.

6.
Eur J Med Chem ; 218: 113390, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33812315

RESUMO

This paper describes the structure-based design of a preliminary drug candidate against COVID-19 using free software and publicly available X-ray crystallographic structures. The goal of this tutorial is to disseminate skills in structure-based drug design and to allow others to unleash their own creativity to design new drugs to fight the current pandemic. The tutorial begins with the X-ray crystallographic structure of the main protease (Mpro) of the SARS coronavirus (SARS-CoV) bound to a peptide substrate and then uses the UCSF Chimera software to modify the substrate to create a cyclic peptide inhibitor within the Mpro active site. Finally, the tutorial uses the molecular docking software AutoDock Vina to show the interaction of the cyclic peptide inhibitor with both SARS-CoV Mpro and the highly homologous SARS-CoV-2 Mpro. The supporting information provides an illustrated step-by-step protocol, as well as a video showing the inhibitor design process, to help readers design their own drug candidates for COVID-19 and the coronaviruses that will cause future pandemics. An accompanying preprint in bioRxiv [https://doi.org/10.1101/2020.08.03.234872] describes the synthesis of the cyclic peptide and the experimental validation as an inhibitor of SARS-CoV-2 Mpro.


Assuntos
Antivirais/química , Proteases 3C de Coronavírus , Desenho de Fármacos , Descoberta de Drogas , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Sítios de Ligação , Domínio Catalítico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Humanos , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , Software , Tratamento Farmacológico da COVID-19
7.
Commun Biol ; 4(1): 783, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168265

RESUMO

Intergenerational trauma increases lifetime susceptibility to depression and other psychiatric disorders. Whether intergenerational trauma transmission is a consequence of in-utero neurodevelopmental disruptions versus early-life mother-infant interaction is unknown. Here, we demonstrate that trauma exposure during pregnancy induces in mouse offspring social deficits and depressive-like behavior. Normal pups raised by traumatized mothers exhibited similar behavioral deficits to those induced in pups raised by their biological traumatized mothers. Good caregiving by normal mothers did not reverse prenatal trauma-induced behaviors, indicating a two-hit stress mechanism comprising both in-utero abnormalities and early-life poor parenting. The behavioral deficits were associated with profound changes in the brain metabotranscriptome. Striking increases in the mitochondrial hypoxia marker and epigenetic modifier 2-hydroxyglutaric acid in the brains of neonates and adults exposed prenatally to trauma indicated mitochondrial dysfunction and epigenetic mechanisms. Bioinformatic analyses revealed stress- and hypoxia-response metabolic pathways in the neonates, which produced long-lasting alterations in mitochondrial energy metabolism and epigenetic processes (DNA and chromatin modifications). Most strikingly, early pharmacological interventions with acetyl-L-carnitine (ALCAR) supplementation produced long-lasting protection against intergenerational trauma-induced depression.


Assuntos
Encéfalo/metabolismo , Depressão/etiologia , Trauma Histórico/complicações , Metabolômica , Mitocôndrias/metabolismo , Transcriptoma , Acetilcarnitina/farmacologia , Animais , Biologia Computacional , Feminino , Humanos , Masculino , Comportamento Materno , Camundongos , Atividade Motora , Gravidez
8.
Eur J Med Chem ; 221: 113530, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34023738

RESUMO

This paper presents the design and study of a first-in-class cyclic peptide inhibitor against the SARS-CoV-2 main protease (Mpro). The cyclic peptide inhibitor is designed to mimic the conformation of a substrate at a C-terminal autolytic cleavage site of Mpro. The cyclic peptide contains a [4-(2-aminoethyl)phenyl]-acetic acid (AEPA) linker that is designed to enforce a conformation that mimics a peptide substrate of Mpro. In vitro evaluation of the cyclic peptide inhibitor reveals that the inhibitor exhibits modest activity against Mpro and does not appear to be cleaved by the enzyme. Conformational searching predicts that the cyclic peptide inhibitor is fairly rigid, adopting a favorable conformation for binding to the active site of Mpro. Computational docking to the SARS-CoV-2 Mpro suggests that the cyclic peptide inhibitor can bind the active site of Mpro in the predicted manner. Molecular dynamics simulations provide further insights into how the cyclic peptide inhibitor may bind the active site of Mpro. Although the activity of the cyclic peptide inhibitor is modest, its design and study lays the groundwork for the development of additional cyclic peptide inhibitors against Mpro with improved activities.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Inibidores de Proteases/farmacologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Desenho de Fármacos , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos Cíclicos/síntese química , Inibidores de Proteases/química , Inibidores de Proteases/toxicidade , Conformação Proteica
9.
ChemRxiv ; 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32817929

RESUMO

This paper describes the structure-based design of a preliminary drug candidate against COVID-19 using free software and publicly available X-ray crystallographic structures. The goal of this tutorial is to disseminate skills in structure-based drug design and to allow others to unleash their own creativity to design new drugs to fight the current pandemic. The tutorial begins with the X-ray crystallographic structure of the main protease (Mpro) of the SARS coronavirus (SARS-CoV) bound to a peptide substrate and then uses the UCSF Chimera software to modify the substrate to create a cyclic peptide inhibitor within the Mpro active site. Finally, the tutorial uses the molecular docking software AutoDock Vina to show the interaction of the cyclic peptide inhibitor with both SARS-CoV Mpro and the highly homologous SARS-CoV-2 Mpro. The supporting information (supplementary material) provides an illustrated step-by-step guide for the inhibitor design, to help readers design their own drug candidates for COVID-19 and the coronaviruses that will cause future pandemics. An accompanying preprint in bioRxiv [https://doi.org/10.1101/2020.08.03.234872] describes the synthesis of the cyclic peptide and the experimental validation as an inhibitor of SARS-CoV-2 Mpro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA