Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
SLAS Technol ; 29(3): 100137, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657705

RESUMO

After haematology, urinalysis is the most common biological test performed in clinical settings. Hence, simplified workflow and automated analysis of urine elements are of absolute necessities. In the present work, a novel lab-on-chip cartridge (Gravity Sedimentation Cartridge) for the auto analysis of urine elements is developed. The GSC consists of a capillary chamber that uptakes a raw urine sample by capillary force and performs particles and cells enrichment within 5 min through a gravity sedimentation process for the microscopic examination. Centrifugation, which is necessary for enrichment in the conventional method, was circumvented in this approach. The AI100 device (Image based autoanalyzer) captures microscopic images from the cartridge at 40x magnification and uploads them into the cloud. Further, these images were auto-analyzed using an AI-based object detection model, which delivers the reports. These reports were available for expert review on a web-based platform that enables evidence-based tele reporting. A comparative analysis was carried out for various analytical parameters of the data generated through GSC (manual microscopy, tele reporting, and AI model) with the gold standard method. The presented approach makes it a viable product for automated urinalysis in point-of-care and large-scale settings.


Assuntos
Automação Laboratorial , Dispositivos Lab-On-A-Chip , Urinálise , Urinálise/instrumentação , Urinálise/métodos , Humanos , Automação Laboratorial/instrumentação , Automação Laboratorial/métodos , Inteligência Artificial
2.
Tuberculosis (Edinb) ; 141: 102367, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37429151

RESUMO

Therapeutic drug monitoring (TDM) is recommended for medications with high inter-individual variability, narrow therapeutic index drugs, possible drug-drug interactions, drug toxicity, and subtherapeutic concentrations, as well as to assess noncompliance. The area under the plasma concentration-time curve (AUC) is a significant pharmacokinetic parameter since it calculates the drug's total systematic exposure in the body. However, multiple blood samples from the patient are required to calculate the area under the curve, which is inconvenient for both the patient and the healthcare professional. To alleviate the issue, the limited sampling strategy (LSS) was devised, in which sampling is minimized while obtaining complete and precise findings to anticipate the area under the curve. One can reduce costs, labor, and discomfort for patients and healthcare workers by applying this limited sampling strategy. This article examines a systematic evaluation of all the limited sampling done in anti-tuberculosis (anti-TB) medications resulting from the literature search of several research papers. This article also briefly describes the two methodologies: Multiple regression analysis (MRA) and the Bayesian approach used to develop a limited sampling strategy model. Anti-TB medications have been found to have considerable inter-individual variability, and isoniazid has a narrow therapeutic index, both of which are criteria for therapeutic drug monitoring. To avoid multi-drug resistance and therapy failure, it is proposed that limited sampling strategy-based therapeutic drug monitoring of anti-TB medications be undertaken to generate an individualized dose regimen, particularly for individuals at high risk of treatment failure or delayed response.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/efeitos adversos , Monitoramento de Medicamentos/métodos , Teorema de Bayes , Estudos de Viabilidade , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Área Sob a Curva
3.
J Mater Sci ; 57(28): 13620-13631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855687

RESUMO

The recent outbreak of the novel corona virus disease 2019 (COVID-19) has been made a serious global impact due to its high infectivity and severe symptoms. The Severe Acute Respiratory Syndrome (SARS-CoV-2) RNA extraction is considered as one of the most important steps in COVID-19 detection. Several commercially available kits and techniques are currently being used for specific extraction of SARS-CoV-2 RNA. However, such methods are time consuming and expensive due to the requirement of trained labors, and several chemical reagents. To overcome the mentioned limitations, magnetic RNA adsorption methodology of glycine functionalized iron oxide nanoparticles (GNPs) was established. It showed an efficient potential in SARS-CoV-2 RNA extraction due to pH responsive nature of GNPs. The highly magnetic pH responsive GNPs were synthesized by one-pot co-precipitation method. Random morphology and average 20 nm size of GNPs were denoted by Transmission Electron Microscopy (TEM). X-ray diffractometer (XRD) showed the crystalline magnetite nature. Fourier transform infrared spectroscopy (FT-IR) and UV-visible spectrometry confirmed the presence of glycine on the surface of magnetic nanoparticles. Furthermore, the magnetic nature and thermal properties of GNPs were examined by vibrating sample magnetometer (VSM) and thermo-gravimetric analysis (TGA), respectively. In this study, glycine performed the role of RNA adsorbent. The adsorption of RNA onto the surface of GNPs was achieved in acidic medium (pH 6). In contrary, the elution of RNA from the surface of GNPs was achieved in basic medium (pH 8). The purity of obtained RNA was analyzed by UV-visible spectrometry. Further, the obtained RNA was examined for the presence of SARS-CoV-2 specific Envelope (E), RNA dependent RNA polymerase (RDRP) and Nucleocapsid (N) genes using an RT-PCR analysis. It showed the sudden rise in amount of these genes after 25 cycles of RT-PCR and hence indicated the efficient RNA extraction by GNPs. Agarose gel electrophoresis was used for validation of the quantity and quality of RNA extracted from SARS-CoV-2 patient's sample. The reusability studies of GNPs were performed by monitoring the repeated use of GNPs for SARS-CoV-2 RNA extraction. This method possesses potential role in the field of disease diagnosis. The extraction results of RNA from SARS-CoV-2 patient's sample indicated that the GNPs have an outstanding property over the current existing extraction protocols. It leads to the new advancements in extraction and detection of RNA. Graphical Abstract: Graphical abstract of the pH responsive SARS-CoV-2 RNA extraction by using glycine functionalized magnetic iron oxide nanoparticles (GNPs) which were prepared by modified cost effective one pot chemical synthesis method. Prepared GNPs were characterized by XRD, FT-IR and UV-Visible spectrometry, Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). Glycine present on the surface of nanoparticles (NPs) played an important role in pH responsive RNA extraction procedure. When nanoparticles added in acidic (pH < 7) medium, glycine gained positive surface charge hence overall surface charge of NPs became positive. Thereby SARS-CoV-2 RNA adsorption/binding occurred on the surface of GNP. Later, the RNA-GNP complex was separated by an external magnet. Separated complex was added in basic (pH > 7) medium to elute RNA from GNP. This phenomenon occurred due to surface negative charge of glycine that caused charge repulsion with RNA. Eluted RNA was examined qualitatively and quantitatively by RT-PCR, nanodrop technique and agarose gel electrophoresis. Results were compared with kit based extracted RNA. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-022-07464-6.

4.
Nat Commun ; 12(1): 1674, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723249

RESUMO

Multi-functional thin films of boron (B) doped Cr2O3 exhibit voltage-controlled and nonvolatile Néel vector reorientation in the absence of an applied magnetic field, H. Toggling of antiferromagnetic states is demonstrated in prototype device structures at CMOS compatible temperatures between 300 and 400 K. The boundary magnetization associated with the Néel vector orientation serves as state variable which is read via magnetoresistive detection in a Pt Hall bar adjacent to the B:Cr2O3 film. Switching of the Hall voltage between zero and non-zero values implies Néel vector rotation by 90 degrees. Combined magnetometry, spin resolved inverse photoemission, electric transport and scanning probe microscopy measurements reveal B-dependent TN and resistivity enhancement, spin-canting, anisotropy reduction, dynamic polarization hysteresis and gate voltage dependent orientation of boundary magnetization. The combined effect enables H = 0, voltage controlled, nonvolatile Néel vector rotation at high-temperature. Theoretical modeling estimates switching speeds of about 100 ps making B:Cr2O3 a promising multifunctional single-phase material for energy efficient nonvolatile CMOS compatible memory applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA