Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 35(7): 981-995, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38865349

RESUMO

Peptide fibrillization is crucial in biological processes such as amyloid-related diseases and hormone storage, involving complex transitions between folded, unfolded, and aggregated states. We here employ light to induce reversible transitions between aggregated and nonaggregated states of a peptide, linked to the parathyroid hormone (PTH). The artificial light-switch 3-{[(4-aminomethyl)phenyl]diazenyl}benzoic acid (AMPB) is embedded into a segment of PTH, the peptide PTH25-37, to control aggregation, revealing position-dependent effects. Through in silico design, synthesis, and experimental validation of 11 novel PTH25-37-derived peptides, we predict and confirm the amyloid-forming capabilities of the AMPB-containing peptides. Quantum-chemical studies shed light on the photoswitching mechanism. Solid-state NMR studies suggest that ß-strands are aligned parallel in fibrils of PTH25-37, while in one of the AMPB-containing peptides, ß-strands are antiparallel. Simulations further highlight the significance of π-π interactions in the latter. This multifaceted approach enabled the identification of a peptide that can undergo repeated phototriggered transitions between fibrillated and defibrillated states, as demonstrated by different spectroscopic techniques. With this strategy, we unlock the potential to manipulate PTH to reversibly switch between active and inactive aggregated states, representing the first observation of a photostimulus-responsive hormone.


Assuntos
Amiloide , Hormônio Paratireóideo , Hormônio Paratireóideo/química , Amiloide/química , Humanos , Peptídeos/química , Fragmentos de Peptídeos/química , Agregados Proteicos , Luz , Processos Fotoquímicos
2.
Angew Chem Int Ed Engl ; 59(14): 5607-5610, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31880848

RESUMO

Butenolides are well-known signaling molecules in Gram-positive bacteria. Here, we describe a novel class of butenolides isolated from a Gram-negative Pseudomonas strain, the styrolides. Structure elucidation was aided by the total synthesis of styrolide A. Transposon mutagenesis enabled us to identify the styrolide biosynthetic gene cluster, and by using a homology search, we discovered the related and previously unknown acaterin biosynthetic gene cluster in another Pseudomonas species. Mutagenesis, heterologous expression, and identification of key shunt and intermediate products were crucial to propose a biosynthetic pathway for both Pseudomonas-derived butenolides. Comparative transcriptomics suggests a link between styrolide formation and the regulatory networks of the bacterium.


Assuntos
4-Butirolactona/análogos & derivados , Pseudomonas/química , 4-Butirolactona/biossíntese , 4-Butirolactona/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis/genética , Família Multigênica , Mutagênese , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Microbiologia do Solo
3.
Biomedicines ; 10(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35884817

RESUMO

We here report a novel strategy to control the bioavailability of the fibrillizing parathyroid hormone (PTH)-derived peptides, where the concentration of the bioactive form is controlled by an reversible, photoswitchable peptide. PTH1-84, a human hormone secreted by the parathyroid glands, is important for the maintenance of extracellular fluid calcium and phosphorus homeostasis. Controlling fibrillization of PTH1-84 represents an important approach for in vivo applications, in view of the pharmaceutical applications for this protein. We embed the azobenzene derivate 3-{[(4-aminomethyl)phenyl]diazenyl}benzoic acid (3,4'-AMPB) into the PTH-derived peptide PTH25-37 to generate the artificial peptide AzoPTH25-37 via solid-phase synthesis. AzoPTH25-37 shows excellent photostability (more than 20 h in the dark) and can be reversibly photoswitched between its cis/trans forms. As investigated by ThT-monitored fibrillization assays, the trans-form of AzoPTH25-37 fibrillizes similar to PTH25-37, while the cis-form of AzoPTH25-37 generates only amorphous aggregates. Additionally, cis-AzoPTH25-37 catalytically inhibits the fibrillization of PTH25-37 in ratios of up to one-fifth. The approach reported here is designed to control the concentration of PTH-peptides, where the bioactive form can be catalytically controlled by an added photoswitchable peptide.

4.
ACS Chem Biol ; 14(8): 1693-1697, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31294961

RESUMO

Microbially produced 3-acyltetramic acids display a diverse range of biological activities. The pyreudiones are new members of this class that were isolated from bacteria of the genus Pseudomonas. Here, we performed a structure-activity relationship study and determined their mode of action. An efficient biomimetic synthesis was developed to synthesize pyreudione A. Pyreudiones and synthetic analogs thereof were tested for their amoebicidal, antibacterial, antiproliferative, and cytotoxic activities. The length of the alkyl side chain and the nature of the amino acid residues within the tetramic acid moiety strongly affected activity, in particular against mycobacteria. The mode of action was shown to correlate with the ability of pyreudiones to act as protonophores. Removal of the acidic proton by methylation of pyreudione A resulted in a loss of bioactivity.


Assuntos
Antibacterianos/farmacologia , Pirrolidinonas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacteriaceae/efeitos dos fármacos , Pirrolidinonas/síntese química , Pirrolidinonas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA