Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vascul Pharmacol ; 154: 107277, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38266794

RESUMO

BACKGROUND: COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can affect multiple organ systems, including the pulmonary vasculature. Endothelial cells (ECs) are thought to play a key role in the propagation of COVID-19, however, our understanding of the exact scale of dysregulation sustained by the pulmonary microvasculature (pMV) remains incomplete. Here we aim to identify transcriptional, phenotypic, and functional changes within the pMV induced by COVID-19. METHODS AND RESULTS: Human pulmonary microvascular endothelial cells (HPMVEC) treated with plasma acquired from patients hospitalised with severe COVID-19 were compared to HPMVEC treated with plasma from patients hospitalised without COVID-19 but with other severe illnesses. Exposure to COVID-19 plasma caused a significant functional decline in HPMVECs as seen by a decrease in both cell viability via the WST-1 cell-proliferation assay and cell-to-cell barrier function as measured by electric cell-substrate impedance sensing. High-content imaging using a Cell Painting image-based assay further quantified morphological variations within sub-cellular organelles to show phenotypic changes in the whole endothelial cell, nucleus, mitochondria, plasma membrane and nucleolus morphology. RNA-sequencing of HPMVECs treated with COVID-19 plasma suggests the observed phenotype may, in part, be regulated by genes such as SMAD7, BCOR, SFMBT1, IFIT5 and ZNF566 which are involved in transcriptional regulation, protein monoubiquitination and TGF-ß signalling. CONCLUSION AND IMPACT: During COVID-19, the pMV undergoes significant remodelling, which is evident based on the functional, phenotypic, and transcriptional changes seen following exposure to COVID-19 plasma. The observed morphological variation may be responsible for downstream complications, such as a decline in overall cellular function and cell-to-cell barrier integrity. Moreover, genes identified through bulk RNA sequencing may contribute to our understanding of the observed phenotype and assist in developing strategies that can inform the rescue of the dysregulated endothelium.


Assuntos
COVID-19 , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , SARS-CoV-2 , Pulmão , Endotélio
2.
Curr Opin Physiol ; 34: 100670, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37159613

RESUMO

Endothelial cell (EC) dysfunction is a characteristic complication of coronavirus-19 (COVID-19). This review discusses the role of the endothelium during the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with a focus on different vascular beds, possible routes of infectivity and the impact of EC dysfunction across multiple organ systems. It is now known that COVID-19 disease elicits a distinct transcriptomic and molecular profile that is different to other viral infections, such as Influenza A (H1N1). Interestingly, there is also a suggested interplay between the heart and lungs that promotes the amplification of inflammatory cascades, leading to an exacerbation in disease severity. Multiomic studies have informed common pathways that may be responsible for endothelial activation while also highlighting key differences in COVID-19 pathogenesis between organ systems. At a pathological level, endothelialitis is an endpoint result regardless of either a direct viral infection or via indirect effects independent of infection. Understanding if ECs are directly targeted by SARS-CoV-2 or are collaterally damaged amid a cytokine storm originating from other cells and organs can provide novel insights into disease progression and may highlight possible new therapeutic opportunities targeted at the damaged endothelium.

3.
Cardiovasc Res ; 118(14): 2960-2972, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-35212715

RESUMO

AIMS: Coronary vasculature formation is a critical event during cardiac development, essential for heart function throughout perinatal and adult life. However, current understanding of coronary vascular development has largely been derived from transgenic mouse models. The aim of this study was to characterize the transcriptome of the human foetal cardiac endothelium using single-cell RNA sequencing (scRNA-seq) to provide critical new insights into the cellular heterogeneity and transcriptional dynamics that underpin endothelial specification within the vasculature of the developing heart. METHODS AND RESULTS: We acquired scRNA-seq data of over 10 000 foetal cardiac endothelial cells (ECs), revealing divergent EC subtypes including endocardial, capillary, venous, arterial, and lymphatic populations. Gene regulatory network analyses predicted roles for SMAD1 and MECOM in determining the identity of capillary and arterial populations, respectively. Trajectory inference analysis suggested an endocardial contribution to the coronary vasculature and subsequent arterialization of capillary endothelium accompanied by increasing MECOM expression. Comparative analysis of equivalent data from murine cardiac development demonstrated that transcriptional signatures defining endothelial subpopulations are largely conserved between human and mouse. Comprehensive characterization of the transcriptional response to MECOM knockdown in human embryonic stem cell-derived EC (hESC-EC) demonstrated an increase in the expression of non-arterial markers, including those enriched in venous EC. CONCLUSIONS: scRNA-seq of the human foetal cardiac endothelium identified distinct EC populations. A predicted endocardial contribution to the developing coronary vasculature was identified, as well as subsequent arterial specification of capillary EC. Loss of MECOM in hESC-EC increased expression of non-arterial markers, suggesting a role in maintaining arterial EC identity.


Assuntos
Células Endoteliais , Coração , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Transcriptoma , Endotélio Vascular/metabolismo , Fatores de Transcrição/metabolismo , Camundongos Transgênicos , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA