Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Public Health ; 14: 102, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24484472

RESUMO

BACKGROUND: Projections of the national burden of cancer play a key role in planning cancer control programmes and investments. We present projections of cancer incidence rates and cases for the period up to 2015-2019 in Switzerland. METHODS: Projections were based on cancer incidence data estimated from cancer registries for the 1989-2009 periods and demographic projections of the Federal Statistical Office. Age-specific incidence rates were modelled as a function of age, period-birth cohort using NORDPRED. RESULTS: Up to 2019 the incidence of all cancers combined is expected to decrease slightly for both sexes. Nevertheless, the overall number of cases is predicted to increase. The number of male cancer cases will increase by 30%, from 20005 in 2005-2009 to 25910/year in 2015-2019. For females the number will increase by 20%, from 16913 to 20359/year in 2015-2019. Changes in the population size and structure will be responsible for most of the increase. Among men, the largest increase is observed for melanoma (+54%), thyroid (+45%), non-Hodgkin lymphoma (+43%), and prostate (+37%). Prostate cancer will contribute with 8083 cases, colorectal cancer with 2908 and lung cancer with 2791. For women, cases of lung and oral cavity cancers will increase by +48% and +38%, respectively; those of thyroid by +45% and non-Hodgkin lymphoma by +36%. The sites with the most cancer predicted are breast (5870), colorectal and lung (over 2000 each), melanoma (1341) and corpus uteri (1040). The overall annual cancer burden predicted for 2015-19 is of 46269 new cases in Switzerland. CONCLUSIONS: Substantial investments appear to be needed in Switzerland cancer services to meet and fill absolute increased demand driven by aging population.


Assuntos
Planejamento em Saúde , Neoplasias/epidemiologia , Adulto , Fatores Etários , Idoso , Efeitos Psicossociais da Doença , Feminino , Previsões , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Suíça/epidemiologia , Adulto Jovem
2.
Radiother Oncol ; 112(2): 178-86, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25300718

RESUMO

BACKGROUND: The ESTRO Health Economics in Radiation Oncology (HERO) project has the overall aim to develop a knowledge base of the provision of radiotherapy in Europe and build a model for health economic evaluation of radiation treatments at the European level. The first milestone was to assess the availability of radiotherapy resources within Europe. This paper presents the personnel data collected in the ESTRO HERO database. MATERIALS AND METHODS: An 84-item questionnaire was sent out to European countries, through their national scientific and professional radiotherapy societies. The current report includes a detailed analysis of radiotherapy staffing (questionnaire items 47-60), analysed in relation to the annual number of treatment courses and the socio-economic status of the countries. The analysis was conducted between February and July 2014, and is based on validated responses from 24 of the 40 European countries defined by the European Cancer Observatory (ECO). RESULTS: A large variation between countries was found for most parameters studied. Averages and ranges for personnel numbers per million inhabitants are 12.8 (2.5-30.9) for radiation oncologists, 7.6 (0-19.7) for medical physicists, 3.5 (0-12.6) for dosimetrists, 26.6 (1.9-78) for RTTs and 14.8 (0.4-61.0) for radiotherapy nurses. The combined average for physicists and dosimetrists is 9.8 per million inhabitants and 36.9 for RTT and nurses. Radiation oncologists on average treat 208.9 courses per year (range: 99.9-348.8), physicists and dosimetrists conjointly treat 303.3 courses (range: 85-757.7) and RTT and nurses 76.8 (range: 25.7-156.8). In countries with higher GNI per capita, all personnel categories treat fewer courses per annum than in less affluent countries. This relationship is most evident for RTTs and nurses. Different clusters of countries can be distinguished on the basis of available personnel resources and socio-economic status. CONCLUSIONS: The average personnel figures in Europe are now consistent with, or even more favourable than the QUARTS recommendations, probably reflecting a combination of better availability as such, in parallel with the current use of more complex treatments than a decade ago. A considerable variation in available personnel and delivered courses per year however persists among the highest and lowest staffing levels. This not only reflects the variation in cancer incidence and socio-economic determinants, but also the stage in technology adoption along with treatment complexity and the different professional roles and responsibilities within each country. Our data underpin the need for accurate prediction models and long-term education and training programmes.


Assuntos
Admissão e Escalonamento de Pessoal/estatística & dados numéricos , Radioterapia (Especialidade) , Coleta de Dados , Bases de Dados Factuais , Europa (Continente) , Humanos , Incidência , Neoplasias/radioterapia , Inquéritos e Questionários , Recursos Humanos
3.
Radiother Oncol ; 112(2): 165-77, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25245560

RESUMO

BACKGROUND AND PURPOSE: In planning to meet evidence based needs for radiotherapy, guidelines for the provision of capital and human resources are central if access, quality and safety are not to be compromised. A component of the ESTRO-HERO (Health Economics in Radiation Oncology) project is to document the current availability and content of guidelines for radiotherapy in Europe. MATERIALS AND METHODS: An 84 part questionnaire was distributed to the European countries through their national scientific and professional radiotherapy societies with 30 items relating to the availability of guidelines for equipment and staffing and selected operational issues. Twenty-nine countries provided full or partial evaluable responses. RESULTS: The availability of guidelines across Europe is far from uniform. The metrics used for capital and human resources are variable. There seem to have been no major changes in the availability or specifics of guidelines over the ten-year period since the QUARTS study with the exception of the recent expansion of RTT staffing models. Where comparison is possible it appears that staffing for radiation oncologists, medical physicists and particularly RTTs tend to exceed guidelines suggesting developments in clinical radiotherapy are moving faster than guideline updating. CONCLUSION: The efficient provision of safe, high quality radiotherapy services would benefit from the availability of well-structured guidelines for capital and human resources, based on agreed upon metrics, which could be linked to detailed estimates of need.


Assuntos
Neoplasias/radioterapia , Admissão e Escalonamento de Pessoal/normas , Radioterapia (Especialidade)/normas , Radioterapia/instrumentação , Radioterapia/normas , Europa (Continente) , Guias como Assunto , Humanos , Radioterapia (Especialidade)/instrumentação , Radioterapia (Especialidade)/métodos , Radioterapia/métodos , Inquéritos e Questionários , Recursos Humanos
4.
Radiother Oncol ; 112(2): 155-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25443859

RESUMO

BACKGROUND: Documenting the distribution of radiotherapy departments and the availability of radiotherapy equipment in the European countries is an important part of HERO - the ESTRO Health Economics in Radiation Oncology project. HERO has the overall aim to develop a knowledge base of the provision of radiotherapy in Europe and build a model for health economic evaluation of radiation treatments at the European level. The aim of the current report is to describe the distribution of radiotherapy equipment in European countries. METHODS: An 84-item questionnaire was sent out to European countries, principally through their national societies. The current report includes a detailed analysis of radiotherapy departments and equipment (questionnaire items 26-29), analyzed in relation to the annual number of treatment courses and the socio-economic status of the countries. The analysis is based on validated responses from 28 of the 40 European countries defined by the European Cancer Observatory (ECO). RESULTS: A large variation between countries was found for most parameters studied. There were 2192 linear accelerators, 96 dedicated stereotactic machines, and 77 cobalt machines reported in the 27 countries where this information was available. A total of 12 countries had at least one cobalt machine in use. There was a median of 0.5 simulator per MV unit (range 0.3-1.5) and 1.4 (range 0.4-4.4) simulators per department. Of the 874 simulators, a total of 654 (75%) were capable of 3D imaging (CT-scanner or CBCT-option). The number of MV machines (cobalt, linear accelerators, and dedicated stereotactic machines) per million inhabitants ranged from 1.4 to 9.5 (median 5.3) and the average number of MV machines per department from 0.9 to 8.2 (median 2.6). The average number of treatment courses per year per MV machine varied from 262 to 1061 (median 419). While 69% of MV units were capable of IMRT only 49% were equipped for image guidance (IGRT). There was a clear relation between socio-economic status, as measured by GNI per capita, and availability of radiotherapy equipment in the countries. In many low income countries in Southern and Central-Eastern Europe there was very limited access to radiotherapy and especially to equipment for IMRT or IGRT. CONCLUSIONS: The European average number of MV machines per million inhabitants and per department is now better in line with QUARTS recommendations from 2005, but the survey also showed a significant heterogeneity in the access to modern radiotherapy equipment in Europe. High income countries especially in Northern-Western Europe are well-served with radiotherapy resources, other countries are facing important shortages of both equipment in general and especially machines capable of delivering high precision conformal treatments (IMRT, IGRT).


Assuntos
Radioterapia (Especialidade)/instrumentação , Radioterapia (Especialidade)/estatística & dados numéricos , Radioterapia/instrumentação , Radioterapia/estatística & dados numéricos , Coleta de Dados , Europa (Continente) , Humanos , Neoplasias/radioterapia , Aceleradores de Partículas , Radioterapia/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA