Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 129: 106205, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36265354

RESUMO

Novel ethyl-4-(aryl)-6-methyl-2-(oxo/thio)-3,4-dihydro-1H-pyrimidine-5-carboxylates were synthesized from one-pot, three-component Biginelli reaction of aryl aldehydes, ethyl acetoacetate and urea/ thiourea by catalytic action of silica supported Bismuth(III) triflate, a Lewis acid. All the synthesized compounds were structurally characterized by spectral (IR, 1H NMR & 13C NMR spectroscopic and Mass spectrometric) and elemental (C, H & N) analyses. The present protocol has deserved novel as, formed the products in high yields with short reaction times, involved eco-friendly methodology and reusable heterogeneous Lewis acid catalyst. The title compounds were screened for in vitro DPPH free radical scavenging antioxidant activity and identified 4i, 4j, 4h & 4f as potential antioxidants. The obtained in vitro results were correlated with molecular docking, ADMET, QSAR, Bioactivity & toxicity risk studies and molecular finger print properties and found that in silico binding affinities were identified in good correlation with in vitro antioxidant activity and studied the structure activity relationship. The molecular docking study has disclosed strong hydrogen bonding interactions of title compounds with aspartic acid (ASP197) aminoacid residue of 2HCK, a complex enzyme of haematopoietic cell kinase and quercetin. Results of toxicology study evaluated for potential risks of compounds have revealed title compounds as safer drugs. In ultimate the study has established ligand's antioxidant potentiality as they effectively binds with ASP197 amino acid of Chain A hence confirms the inhibition of growth of reactive oxygen species in vivo. In addition, the title compounds have been identified as potential blood-brain barrier penetrable entities and efficient central nervous system (CNS) active neuro-protective antioxidant agents.


Assuntos
Antioxidantes , Bismuto , Ácidos Carboxílicos , Antioxidantes/farmacologia , Antioxidantes/química , Bismuto/química , Catálise , Ácidos de Lewis , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirimidinas/química , Dióxido de Silício/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Células CACO-2 , Humanos
2.
Molecules ; 27(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630618

RESUMO

In many regions of the world, Leishmaniasis is a cause of substantial mortality and ailment. Due to impediment in available treatment, development of novel and effective treatments is indispensable. Significance of autophagy has been accentuated in infectious disease as well as in Leishmaniasis, and it is having capability to be manifested as a therapeutic target. By evincing autophagy as a novel therapeutic regime, this study emphasized on the critical role of ATG4.1-ATG8 and ATG5-ATG12 complexes in Leishmania species. The objective here was to identify ATG8 as a potential therapeutic target in Leishmania. R71T, P56E, R18P are the significant mutations which shows detrimental effect on ATG8 while Arg276, Arg73, Cys75 of ATG4.1 and Val88, Pro89, Glu116, Asn117, and Gly120 are interacting residues of ATG8. Along with this, we also bring into spotlight an enticing role of Thiabendazole derivatives that interferes with the survival mechanisms by targeting ATG8. Further, the study claims that thiabendazole can be a potential drug candidate to target autophagy process in the infectious disease Leishmaniasis.


Assuntos
Doenças Transmissíveis , Leishmania , Leishmaniose , Autofagia/genética , Humanos , Leishmaniose/tratamento farmacológico , Tiabendazol
3.
Bioorg Chem ; 111: 104837, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812281

RESUMO

A new series of urea/thiourea derivatives have been efficiently synthesized from the reaction of L-3-hydroxytyrosine with selective isocyanates/isothiocyanates and characterized by Infra-red, proton & carbon-13 nuclear magnetic resonance spectral and mass spectrometry studies. All the synthesized compounds have been screened for their antioxidant activity by 1,1-diphenyl1-2-picrylhydrazyl radical assay, ferric reducing antioxidant power assay and also studied their molecular docking interaction profiles against 1N8Q and 3NRZ enzymatic proteins. The in vitro antioxidant activity has further supported by quantitative structure activity relationship, absorption, distribution, metabolism, and excretion & toxicity studies, bioactivity studies & enzyme inhibition assay and identified that they were potentially bound to ASP490 & ASP361 aminoacid residue in chain A of 1N8Q protein and GLN1194 aminoacid residue in chain L of 3NRZ protein and are responsible for potential antioxidant activity. It is proved that urea derivatives linked with 4-fluoro & 4-nitro and thiourea derivatives linked with 3-chloro & 4-fluoro have exhibited promising antioxidant activity. In eventual synthesized compounds have been identified as potential blood-brain barrier penetrable compounds and proficient central nervous system active neuro-protective antioxidant agents as they have envisaged as easily penetrable to blood-brain barrier thresholds, a neuroprotective property.


Assuntos
Antioxidantes/farmacologia , Biologia Computacional , Tirosina/farmacologia , Ureia/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Relação Dose-Resposta a Droga , Compostos Férricos/antagonistas & inibidores , Simulação de Acoplamento Molecular , Estrutura Molecular , Picratos/antagonistas & inibidores , Relação Estrutura-Atividade , Tirosina/síntese química , Tirosina/química , Ureia/análogos & derivados , Ureia/química
4.
Bioorg Chem ; 95: 103558, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911311

RESUMO

A series of 1-(2,3-dihydro-1H-indan-1-yl)-3-aryl urea/thiourea derivatives (4a-j) have been synthesized from the reaction of 2,3-dihydro-1H-inden-1-amine (2) with various aryl isocyanates/isothiocyanates (3a-j) by using N,N-DIPEA base (Hunig's base) catalyst in THF at reflux conditions. All of them are structurally confirmed by spectral (IR, 1H &13C NMR and MASS) and elemental analysis and screened for their in-vitro antioxidant activity against DPPH and NO free radicals and found that compounds 4b, 4i, 4h &4g are potential antioxidants. The obtained in vitro results were compared with the molecular docking, ADMET, QSAR and bioactivity study results performed for them and identified that the recorded in silico binding affinities were observed in good correlation with the in vitro antioxidant results. The Molecular docking analysis had unveiled the strong hydrogen bonding interactions of synthesized ligands with ARG 160 residue of protein tyrosine kinase (2HCK) enzyme and plays an effective role in its inhibition. Toxicology studies have assessed the potential risks of 4a-j and inferred that all of them were in the limits of potential drugs. The conformational analysis of 4a-j inferred that the urea/thiourea spacer linking 2,3-dihydro-1H-inden-1-amino and substituted aryl units has facilitated all these molecules to effectively bind with ARG 160 amino acid residue present on the α-helix of the protein tyrosine kinase (2HCK) enzyme specifically on chain A of hemopoetic cell kinase. Collectively this study has established a relationship between the antioxidant potentiality and ligands binding with ARG 160 amino acid residue of chain A of 2HCK enzyme to inhibit its growth as well as proliferation of reactive oxygen species in vivo.


Assuntos
Antioxidantes/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Tioureia/química , Ureia/química , Antioxidantes/farmacocinética , Barreira Hematoencefálica , Células CACO-2 , Catálise , Humanos , Ligantes , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Tirosina Quinases/química , Relação Quantitativa Estrutura-Atividade , Tioureia/farmacologia , Ureia/farmacologia
5.
Bioorg Chem ; 97: 103708, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32146177

RESUMO

A series of novel α-methyl-l-DOPA urea derivatives viz., 3-(3,4-dihydroxyphenyl)-2-methyl-2-(3-halo/trifluoromethyl substituted phenyl ureido)propanoic acids (6a-e) have been synthesized from the reaction of α-methyl-l-DOPA (3) with various aryl isocyanates (4a-e) by using triethylamine (5, TEA) as a base catalyst in THF at reflux conditions. The synthesized compounds are structurally characterized by spectral (IR, 1H &13C NMR and MASS) and elemental analysis studies and screened for their in-vitro antioxidant activity against DPPH, NO and H2O2 free radical scavenging assays and identified compounds 6c &6d as potential antioxidants. The acquired in vitro results were correlated with the results of molecular docking, ADMET, QSAR and bioactivity studies performed for them and predicted that the recorded in silico binding affinities are in good correlation with the in vitro antioxidant activity results. The molecular docking analysis has comprehended the strong hydrogen bonding interactions of 6a-e with 1CB4, 1N8Q, 3MNG, 1OG5, 1DNU, 3NRZ, 2CDU, 1HD2 and 2HCK proteins of their respective SOD, LO, PRXS5, CP450, MP, XO, NO, PRY5 and HCK enzymes. This has sustained the effective binding of 6a-e and resulted in functional inhibition of selective aminoacid residues to be pronounced as multiple molecular targets mediated antioxidant potent compounds. In addition, the evaluated toxicology risks of 6a-e are identified with in the potential limits of drug candidates. The conformational analysis of 6c & 6d prominently infers that urea moiety uniting α-methyl-l-DOPA with halo substituted aryl units into a distinctive orientation to comply good structure-activity to inhibit the proliferation of reactive oxygen species in vivo.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Metildopa/análogos & derivados , Metildopa/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia , Animais , Antioxidantes/farmacocinética , Células CACO-2 , Cães , Humanos , Células Madin Darby de Rim Canino , Metildopa/farmacocinética , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Ureia/farmacocinética
6.
Crit Rev Food Sci Nutr ; 59(17): 2746-2759, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29693412

RESUMO

Processed foods, generally known as modified raw foods produced by innovative processing technologies alters the food constituents such natural enzymes, fatty acids, micronutrients, macronutrients and vitamins. In contrast to fresh and unprocessed foods, processed foods are guaranteed to be safer, imperishable, long lasting and consist high level of nutrients bioactivity. Currently, the evolution in food processing technologies is necessary to face food security and safety, nutrition demand, its availability and also other global challenges in the food system. In this scenario, this review consists of information on two food processing technologies, which effects on processed foods before and after processing and the impact of food products on human health. It is also very well established that understanding the type and structure of foods to be processed can assist food processing industries towards advancement of novel food products. In connection with this fact, the present article also discusses the emerging trends and possible modifications in food processing technologies with the combination of conventional and modern techniques to get the suitable nutritional and safety qualities in food.


Assuntos
Dieta , Fast Foods , Manipulação de Alimentos , Valor Nutritivo , Abastecimento de Alimentos , Humanos , Micronutrientes
8.
Front Oncol ; 12: 860508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359383

RESUMO

Caffeic acid (CA) is found abundantly in fruits, vegetables, tea, coffee, oils, and more. CA and its derivatives have been used for many centuries due to their natural healing and medicinal properties. CA possesses various biological and pharmacological activities, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. The potential therapeutic effects of CA are mediated via repression and inhibition of transcription and growth factors. CA possesses potential anticancer and neuroprotective effects in human cell cultures and animal models. However, the biomolecular interactions and pathways of CA have been described highlighting the target binding proteins and signaling molecules. The current review focuses on CA's chemical, physical, and pharmacological properties, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. We further described CA's characteristics and therapeutic potential and its future directions.

9.
ACS Omega ; 7(41): 36307-36317, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278056

RESUMO

The current work describes room-temperature gas sensing performances using an oligoacenaphthylene (OAN)/p-hydroxyphenylacetic acid (p-HPA) composite. Based on inverse gas chromatography (IGC), the London dispersive surface energy γs d is calculated by using 14 representative models. Even when the γs d values of both OAN and the OAN/p-HPA composite are decreased as the temperature increases, the surface of OAN shows a higher value than that of the composite. The Gibbs surface free energy values of both are decreased with an increasing temperature. In our results, higher Lewis basic characters are observed in OAN and the OAN/p-HPA composite and the OAN/p-HPA surface exhibits a higher basicity compared to OAN. Because of the presence of phenolic groups in the OAN/p-HPA composite, the more important basic character drives a significant CO gas sensing ability with a sensitivity of 8.96% and good cycling stability as compared to the pristine counterparts. It is expected that the current study sheds light on a new pathway to exploring polymer composite materials for futuristic diverse and multiple applications, including IGC and gas sensor applications.

10.
PLoS One ; 17(6): e0268505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35737691

RESUMO

BACKGROUND: Diabetes mellitus is a chronic metabolic disorder characterized by elevated plasma glucose levels. It is often defined as a lifestyle disease having severe economic and physiological repercussions on the individual. One of the most prevalent clinical consequences of diabetes is the lagging pace of injury healing leading to chronic wounds, which still to date have limited treatment options. The objective of this research is to look into the wound healing capabilities of gallocatechin (GC) and silver nanoparticles (AgNPs) impregnated patches in diabetic rats. Experimental rats were dressed patches and the wound healing skin region was dissected at the end of the experiment for molecular analysis. The wound healing rate in diabetic rats dressed with CGP2 and CGP3 & silver sulfadiazine (AgS) patches were found to be high. While mRNA and immunofluorescence or immunohistochemistry assays reveal that Wnt3a and ß-catenin levels were higher with Gsk-3ß and c-fos levels were lower in diabetic rats dressed with in CGP2 and CGP3 as compared with diabetic rats dressed with DC+CGP1. Furthermore, apoptosis markers such as caspase-3, caspase-9, and Bax levels were reduced, whereas anti-apoptosis maker (Bcl-2) and proliferation marker (PCNA) levels were increased in diabetic rats dressed with CGP2 and CGP3 as compared with diabetic rats dressed with DC+CGP1. In conclusion, the results demonstrated that GC-AgNPs-CGP (CGP2 & CGP3) dressing on diabetes wound rats decreased changes in Wnt3a/ß-catenin pathways, resulting in lower apoptosis and greater proliferation, so drastically improving diabetic wound healing.


Assuntos
Diabetes Mellitus Experimental , Nanopartículas Metálicas , Animais , Apoptose , Bandagens , Catequina/análogos & derivados , Proliferação de Células , Diabetes Mellitus Experimental/complicações , Glicogênio Sintase Quinase 3 beta/metabolismo , Nanopartículas Metálicas/química , Ratos , Prata/química , Via de Sinalização Wnt , Cicatrização , beta Catenina/metabolismo
11.
Front Pharmacol ; 13: 845871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355732

RESUMO

Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-oxidant and anti-oxidant properties. CA's mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells' DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA's therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis on in vitro and in vivo studies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review.

12.
Chemosphere ; 309(Pt 1): 136626, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36181856

RESUMO

Endocrine disrupting compounds (EDCs) are extensively found in the environment and severely impacting human health. In addressing this issue, the beta-cyclodextrin crosslinked citric acid (BCD-CA) had been previously employed in membrane-protected micro-solid phase extraction for sequestering EDCs from water medium; and the findings revealed that BCD-CA possessed a selectivity property. On that account, the potential of BCD-CA towards competitive adsorption of selected EDCs was investigated in terms of adsorption mechanism and selectivity property. Factors that affected the removal efficiencies such as sample pH, sorbent dosage, contact time and initial concentration were evaluated. The characterization results revealed that the carbon percentage of BCD-CA had increased by 2.04%, while the hydrogen percentage had reduced by 1.83%, signifying the successful crosslinking of BCD-CA. Besides, the amount of active BCD was calculated to be 3.2 × 10-7 mol, while the amount of carboxyl group was 2.48 × 10-5 mol per 4 mg of BCD-CA. Moreover, BCD-CA was stable in an aqueous medium with the zeta potential obtained at -36.5 mV and had a high-water retention capacity (∼150%). The competitive adsorption mechanism by BCD-CA with EDCs followed the pseudo-second-order kinetics and Freundlich isotherm, suggesting that the adsorption process was dominated by chemisorption on the heterogeneous surface of the adsorbent. Thermodynamic results revealed that adsorption of 4-tert-octylphenol had the most negative ΔG value, indicating most favorable to be adsorbed by BCD-CA as opposed to triclosan and bisphenol A, which was coherent with the apparent formation constant results. These unique properties manifested the practicality of BCD-CA as a selective adsorbent to detect and remove EDCs from the water medium.


Assuntos
Disruptores Endócrinos , Triclosan , beta-Ciclodextrinas , Humanos , Polipropilenos , Ácido Cítrico , Extração em Fase Sólida , beta-Ciclodextrinas/química , Água/química , Carbono , Hidrogênio
13.
Front Oncol ; 12: 869672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402265

RESUMO

Non-small cell lung carcinoma (NSCLC) comprises 80%-85% of lung cancer cases. EGFR is involved in several cancer developments, including NSCLC. The EGFR pathway regulates the Bax/Bcl-2 cascade in NSCLC. Increasing understanding of the molecular mechanisms of fundamental tumor progression has guided the development of numerous antitumor drugs. The development and improvement of rationally planned inhibitors and agents targeting particular cellular and biological pathways in cancer have been signified as a most important paradigm shift in the strategy to treat and manage lung cancer. Newer approaches and novel chemotherapeutic agents are required to accompany present cancer therapies for improving efficiency. Using natural products as a drug with an effective delivery system may benefit therapeutics. Naturally originated compounds such as phytochemicals provide crucial sources for novel agents/drugs and resources for tumor therapy. Applying the small-molecule inhibitors (SMIs)/phytochemicals has led to potent preclinical discoveries in various human tumor preclinical models, including lung cancer. In this review, we summarize recent information on the molecular mechanisms of the Bax/Bcl-2 cascade and EGFR pathway in NSCLC and target them for therapeutic implications. We further described the therapeutic potential of Bax/Bcl-2/EGFR SMIs, mainly those with more potent and selectivity, including gefitinib, EGCG, ABT-737, thymoquinone, quercetin, and venetoclax. In addition, we explained the targeting EGFR pathway and ongoing in vitro and in vivo and clinical investigations in NSCLC. Exploration of such inhibitors facilitates the future treatment and management of NSCLC.

14.
Front Nutr ; 9: 870819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464008

RESUMO

This study was aimed to use extrusion cooking as a pretreatment for non-conventional seeds (Indian horse chestnut flour) to blend them with whole grain flours (whole wheat flour, whole barley flour, and whole corn flour) for the development of a pregelatinized cereal bar (PCB). In this study, date paste (7.5-17.5%) and walnut grits (2.5-12.5%) were incorporated at varying levels to prepare PCB. The PCB was evaluated for its nutritional, color, textural (both three-point bending test and TPA), antioxidant activity, and sensory attributes. The flexural modulus, rupture stress, and fracture strain of PCB increased with the incorporation of a higher proportion of date paste. The protein and fiber content in PCB increased from 7.74 to 9.13% and 4.81 to 5.59% with the incorporation of walnut grits and date paste, respectively. The DPPH, total phenolic content, and water activity of PCB were determined, which progressively enhanced with increased levels of walnut grits and date paste. The correlation between sensory attributes and instrumental texture on PCB was also investigated. The correlation results showed a significant (p < 0.05) positive correlation between texture analysis and sensory hardness, springiness, adhesiveness, and negatively correlated to instrumental and sensory cohesiveness. For sensorial attributes, all PCB samples presented average scores of 7/10 and 4/5 for buying intention. Therefore, whole grain extrudates, date paste, and walnut grits can be efficiently used to develop PCB with improved nutritional, nutraceutical, and economic values.

15.
Antibiotics (Basel) ; 11(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35625210

RESUMO

A major global health risk has been witnessed with the development of drug-resistant bacteria and multidrug-resistant pathogens linked to significant mortality. Coumarins are heterocyclic compounds belonging to the benzophenone class enriched in different plants. Coumarins and their derivatives have a wide range of biological activity, including antibacterial, anticoagulant, antioxidant, anti-inflammatory, antiviral, antitumour, and enzyme inhibitory effects. In the past few years, attempts have been reported towards the optimization, synthesis, and evaluation of novel coumarin analogues as antimicrobial agents. Several coumarin-based antibiotic hybrids have been developed, and the majority of them were reported to exhibit potential antibacterial effects. In the present work, studies reported from 2016 to 2020 about antimicrobial coumarin analogues are the focus. The diverse biological spectrum of coumarins can be attributed to their free radical scavenging abilities. In addition to various synthetic strategies developed, some of the structural features include a heterocyclic ring with electron-withdrawing/donating groups conjugated with the coumarin nucleus. The suggested structure-activity relationship (SAR) can provide insight into how coumarin hybrids can be rationally improved against multidrug-resistant bacteria. The present work demonstrates molecular insights for coumarin derivatives having antimicrobial properties from the recent past. The detailed SAR outcomes will benefit towards leading optimization during the discovery and development of novel antimicrobial therapeutics.

16.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35337070

RESUMO

Isatin (1H indole 2, 3-dione) is a heterocyclic, endogenous lead molecule recognized in humans and different plants. The isatin nucleus and its derivatives are owed the attention of researchers due to their diverse pharmacological activities such as anticancer, anti-TB, antifungal, antimicrobial, antioxidant, anti-inflammatory, anticonvulsant, anti-HIV, and so on. Many research chemists take advantage of the gentle structure of isatins, such as NH at position 1 and carbonyl functions at positions 2 and 3, for designing biologically active analogues via different approaches. Literature surveys based on reported preclinical, clinical, and patented details confirm the multitarget profile of isatin analogues and thus their importance in the field of medicinal chemistry as a potent chemotherapeutic agent. This review represents the recent development of isatin analogues possessing potential pharmacological action in the years 2016-2020. The structure-activity relationship is also discussed to provide a pharmacophoric pattern that may contribute in the future to the design and synthesis of potent and less toxic therapeutics.

17.
J Pers Med ; 12(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35207708

RESUMO

Parkinsonism-associated deglycase-PARK7/DJ-1 (PARK7) is a multifunctional protein having significant roles in inflammatory and immune disorders and cell protection against oxidative stress. Mutations in PARK7 may result in the onset and progression of a few neurodegenerative disorders such as Parkinson's disease. This study has analyzed the non-synonymous single nucleotide polymorphisms (nsSNPs) resulting in single amino acid substitutions in PARK7 to explore its disease-causing variants and their structural dysfunctions. Initially, we retrieved the mutational dataset of PARK7 from the Ensembl database and performed detailed analyses using sequence-based and structure-based approaches. The pathogenicity of the PARK7 was then performed to distinguish the destabilizing/deleterious variants. Aggregation propensity, noncovalent interactions, packing density, and solvent accessible surface area analyses were carried out on the selected pathogenic mutations. The SODA study suggested that mutations in PARK7 result in aggregation, inducing disordered helix and altering the strand propensity. The effect of mutations alters the number of hydrogen bonds and hydrophobic interactions in PARK7, as calculated from the Arpeggio server. The study indicated that the alteration in the hydrophobic contacts and frustration of the protein could alter the stability of the missense variants of the PARK7, which might result in disease progression. This study provides a detailed understanding of the destabilizing effects of single amino acid substitutions in PARK7.

18.
Sci Rep ; 12(1): 1998, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132094

RESUMO

The Co3O4@N-MWCNT composite was synthesized by a sonication-supported thermal reduction process for supercapacitor applications. The structural and morphological properties of the materials were characterized via Raman, XRD, XPS, SEM-EDX, and FE-TEM analysis. The composite electrode was constructed into a three-electrode configuration and examined by using CV, GCD and EIS analysis. The demonstrated electrochemical value of ~ 225 F/g at 0.5 A/g by the electrode made it appropriate for potential use in supercapacitor applications.

19.
PLoS One ; 17(5): e0267084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507592

RESUMO

Single amino-acid substitution in a protein affects its structure and function. These changes are the primary reasons for the advent of many complex diseases. Analyzing single point mutations in a protein is crucial to see their impact and to understand the disease mechanism. This has given many biophysical resources, including databases and web-based tools to explore the effects of mutations on the structure and function of human proteins. For a given mutation, each tool provides a score-based outcomes which indicate deleterious probability. In recent years, developments in existing programs and the introduction of new prediction algorithms have transformed the state-of-the-art protein mutation analysis. In this study, we have performed a systematic study of the most commonly used mutational analysis programs (10 sequence-based and 5 structure-based) to compare their prediction efficiency. We have carried out extensive mutational analyses using these tools for previously known pathogenic single point mutations of five different proteins. These analyses suggested that sequence-based tools, PolyPhen2, PROVEAN, and PMut, and structure-based web tool, mCSM have a better prediction accuracy. This study indicates that the employment of more than one program based on different approaches should significantly improve the prediction power of the available methods.


Assuntos
Proteínas , Software , Algoritmos , Substituição de Aminoácidos , Biologia Computacional/métodos , Humanos , Internet , Proteínas/química , Proteínas/genética
20.
Mini Rev Med Chem ; 21(10): 1173-1181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33397236

RESUMO

The novel Coronavirus disease (COVID-19) is an epidemic disease that appeared at the end of the year 2019 with a sudden increase in number and came to be considered as a pandemic disease caused by a viral infection which has threatened most countries for an emergency search for new anti-SARS-COV drugs /vaccines. At present, the number of clinical trials is ongoing worldwide on different drugs i.e. Hydroxychloroquine, Remedisvir, Favipiravir that utilize various mechanisms of action. A few countries are currently processing clinical trials, which may result in a positive outcome. Favipiravir (FPV) represents one of the feasible treatment options for COVID-19, if the result of the trials turns out positive. Favipiravir will be one of the developed possibly authoritative drugs to warrant benefits to mankind with large-scale production to meet the demands of the current pandemic Covid-19 outbreak and future epidemic outbreaks. In this review, the authors tried to explore key molecules, which will be supportive for devising COVID-19 research.


Assuntos
Antivirais/síntese química , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Antivirais/uso terapêutico , COVID-19/virologia , Sistemas de Liberação de Medicamentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA