Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biometeorol ; 68(6): 1081-1092, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430247

RESUMO

As populations and temperatures of urban areas swell, more people face extreme heat and are at increasing risk of adverse health outcomes. Radiation accounts for much of human heat exposure but is rarely used as heat metric due to a lack of cost-effective and accurate sensors. To this end, we fuse the concepts of a three-globe radiometer-anemometer with a cylindrical human body shape representation, which is more realistic than a spherical representation. Using cost-effective and readily available materials, we fabricated two combinations of three cylinders with varying surface properties. These simple devices measure the convection coefficient and the shortwave and longwave radiative fluxes. We tested the devices in a wind tunnel and at fourteen outdoor sites during July 2023's record-setting heat wave in Tempe, Arizona. The average difference between pedestrian-level mean radiant temperature (MRT) measured using research-grade 3-way net radiometers and the three-cylinder setup was 0.4 ± 3.0 °C ( ±  1 SD). At most, we observed a 10 °C MRT difference on a white roof site with extreme MRT values (70 °C to 80 °C), which will be addressed through discussed design changes to the system. The measured heat transfer coefficient can be used to calculate wind speed below 2 m·s-1; thus, the three cylinders combined also serve as a low-speed anemometer. The novel setup could be used in affordable biometeorological stations and deployed across urban landscapes to build human-relevant heat sensing networks.


Assuntos
Calor Extremo , Radiometria , Humanos , Radiometria/instrumentação , Radiometria/métodos , Arizona , Vento , Pedestres
2.
Sci Total Environ ; 923: 171525, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458460

RESUMO

Extreme heat is a current and growing global health concern. Current heat exposure models include meteorological and human factors that dictate heat stress, comfort, and risk of illness. However, radiation models simplify the human body to a cylinder, while convection ones provide conflicting predictions. To address these issues, we introduce a new method to characterize human exposure to extreme heat with unprecedented detail. We measure heat loads on 35 body surface zones using an outdoor thermal manikin ("ANDI") alongside an ultrasonic anemometer array and integral radiation measurements (IRM). We show that regardless of body orientation, IRM and ANDI agree even under high solar conditions. Further, body parts can be treated as cylinders, even in highly turbulent flow. This geometry-rooted insight yields a whole-body convection correlation that resolves prior conflicts and is valid for diverse indoor and outdoor wind flows. Results will inform decision-making around heat protection, adaptation, and mitigation.


Assuntos
Calor Extremo , Humanos , Manequins , Vento
3.
iScience ; 27(7): 110304, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39040057

RESUMO

Sweat evaporation is critical to human thermoregulation, but current understanding of the process on 20 µm to 2 cm scale is limited. To this end, we introduce a wind-tunnel-shaped ventilated capsule with an infrared window for simultaneous infrared sweat imaging and evaporation rate measurement. Implementing the capsule in pilot human subject tests suggests that the common assumption of sweat being an isothermal film is only valid when the evaporation rate is low and sweat forms puddles on the skin. Before transitioning to this filmwise mode, sweating occurs in cyclic dropwise mode, displaying a 3x higher mass transfer coefficient in the same conditions. Imaging highlighted distinct phenomena occurring during and between these modes including out-of-duct evaporation, pulsating droplets, temporary and eventually lasting crevice filling, and individual drop-to-film spreading. In all, sweat evaporation is an impactful area that our results show is ripe for exploration, which can be achieved quantitatively using the introduced platform.

4.
Sci Rep ; 9(1): 20315, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889164

RESUMO

Recent developments of burst-mode lasers and imaging systems have opened new realms of simultaneous diagnostics for velocity and density fields at a rate of 1 kHz-1 MHz. These enable the exploration of previously unimaginable shock-driven turbulent flow fields that are of significant importance to problems in high-energy density physics. The current work presents novel measurements using simultaneous measurements of velocity and scalar fields at 60 kHz to investigate Richtmyer-Meshkov instability (RMI) in a spatio-temporal approach. The evolution of scalar fields and the vorticity dynamics responsible for the same are shown, including the interaction of shock with the interface. This temporal information is used to validate two vorticity-deposition models commonly used for initiation of large scale simulations, and have been previously validated only via simulations or integral measures of circulation. Additionally, these measurements also enable tracking the evolution and mode merging of individual flow structures that were previously not possible owing to inherently random variations in the interface at the smallest scales. A temporal evolution of symmetric vortex merging and the induced mixing prevalent in these problems is presented, with implications for the vortex paradigms in accelerated inhomogenous flows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA