Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(41): 28437-28451, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37843877

RESUMO

A bacteriochlorophyll a (Bchla) dimer is a basic functional unit in the LH1 and LH2 photosynthetic pigment-protein antenna complexes of purple bacteria, where an ordered, close arrangement of Bchla pigments-secured by noncovalent bonding to a protein template-enables exciton delocalization at room temperature. Stable and tunable synthetic analogs of this key photosynthetic subunit could lead to facile engineering of exciton-based systems such as in artificial photosynthesis, organic optoelectronics, and molecular quantum computing. Here, using a combination of synthesis and theory, we demonstrate that exciton delocalization can be achieved in a dimer of a synthetic bacteriochlorin (BC) featuring stability, high structural modularity, and spectral properties advantageous for exciton-based devices. The BC dimer was covalently templated by DNA, a stable and highly programmable scaffold. To achieve exciton delocalization in the absence of pigment-protein interactions critical for the Bchla dimer, we relied on the strong transition dipole moment in BC enabled by two auxochromes along the Qy transition, and omitting the central metal and isocyclic ring. The spectral properties of the synthetic "free" BC closely resembled those of Bchla in an organic solvent. Applying spectroscopic modeling, the exciton delocalization in the DNA-templated BC dimer was evaluated by extracting the excitonic hopping parameter, J to be 214 cm-1 (26.6 meV). For comparison, the same method applied to the natural protein-templated Bchla dimer yielded J of 286 cm-1 (35.5 meV). The smaller value of J in the BC dimer likely arose from the partial bacteriochlorin intercalation and the difference in medium effect between DNA and protein.


Assuntos
Complexos de Proteínas Captadores de Luz , Complexo de Proteínas do Centro de Reação Fotossintética , Complexos de Proteínas Captadores de Luz/química , Metodologias Computacionais , Teoria Quântica , Complexo de Proteínas do Centro de Reação Fotossintética/química , DNA
2.
J Phys Chem A ; 127(23): 4901-4918, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37261888

RESUMO

Aggregates of conjugated organic molecules (i.e., dyes) may exhibit relatively large one- and two-exciton interaction energies, which has motivated theoretical studies on their potential use in quantum information science (QIS). In practice, one way of realizing large one- and two-exciton interaction energies is by maximizing the transition dipole moment (µ) and difference static dipole moment (Δd) of the constituent dyes. In this work, we characterized the electronic structure and excited-state dynamics of monomers and aggregates of four asymmetric polymethine dyes templated via DNA. Using steady-state and time-resolved absorption and fluorescence spectroscopy along with quantum-chemical calculations, we found the asymmetric polymethine dye monomers exhibited a large µ, an appreciable Δd, and a long excited-state lifetime (τp). We formed dimers of all four dyes and observed that one dye, Dy 754, displayed the strongest propensity for aggregation and exciton delocalization. Motivated by these results, we undertook a more comprehensive survey of Dy 754 dimer and tetramer aggregates using steady-state absorption and circular dichroism spectroscopy. Modeling these spectra revealed an appreciable excitonic hopping parameter (J). Lastly, we used femtosecond transient absorption spectroscopy to characterize τp of the dimer and tetramer, which we observed to be exceedingly short. This work revealed that asymmetric polymethine dyes exhibited µ, Δd, monomer τp, and J values promising for QIS; however, further work is needed to overcome excited-state quenching and achieve long aggregate τp.

3.
J Phys Chem A ; 122(8): 2086-2095, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420037

RESUMO

Exciton delocalization in dye aggregate systems is a phenomenon that is revealed by spectral features, such as Davydov splitting, J- and H-aggregate behavior, and fluorescence suppression. Using DNA as an architectural template to assemble dye aggregates enables specific control of the aggregate size and dye type, proximal and precise positioning of the dyes within the aggregates, and a method for constructing large, modular two- and three-dimensional arrays. Here, we report on dye aggregates, organized via an immobile Holliday junction DNA template, that exhibit large Davydov splitting of the absorbance spectrum (125 nm, 397.5 meV), J- and H-aggregate behavior, and near-complete suppression of the fluorescence emission (∼97.6% suppression). Because of the unique optical properties of the aggregates, we have demonstrated that our dye aggregate system is a viable candidate as a sensitive absorbance and fluorescence optical reporter. DNA-templated aggregates exhibiting exciton delocalization may find application in optical detection and imaging, light-harvesting, photovoltaics, optical information processing, and quantum computing.


Assuntos
Carbocianinas/química , DNA Cruciforme/química , Fluorescência , Corantes Fluorescentes/química , Modelos Moleculares , Moldes Genéticos
4.
J Phys Chem A ; 121(37): 6905-6916, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28813152

RESUMO

Coherent exciton delocalization in dye aggregate systems gives rise to a variety of intriguing optical phenomena, including J- and H-aggregate behavior and Davydov splitting. Systems that exhibit coherent exciton delocalization at room temperature are of interest for the development of artificial light-harvesting devices, colorimetric detection schemes, and quantum computers. Here, we report on a simple dye system templated by DNA that exhibits tunable optical properties. At low salt and DNA concentrations, a DNA duplex with two internally functionalized Cy5 dyes (i.e., dimer) persists and displays predominantly J-aggregate behavior. Increasing the salt and/or DNA concentrations was found to promote coupling between two of the DNA duplexes via branch migration, thus forming a four-armed junction (i.e., tetramer) with H-aggregate behavior. This H-tetramer aggregate exhibits a surprisingly large Davydov splitting in its absorbance spectrum that produces a visible color change of the solution from cyan to violet and gives clear evidence of coherent exciton delocalization.


Assuntos
Carbocianinas/química , DNA/química , Corantes Fluorescentes/química , Materiais Biomiméticos/química , Materiais Biomiméticos/efeitos da radiação , Carbocianinas/efeitos da radiação , DNA/efeitos da radiação , Transferência de Energia , Corantes Fluorescentes/efeitos da radiação , Cinética , Luz , Cloreto de Magnésio/química , Modelos Químicos , Temperatura , Termodinâmica
5.
J Phys Chem Lett ; : 8018-8025, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082824

RESUMO

Molecular (dye) aggregates play a prominent role in light harvesting and are of interest in quantum information science; however, there are limited reports that programmably assemble many (>4) dye aggregates featuring strong coupling and exciton delocalization. Using oligonucleotides with four Cy5s covalently linked in series along the phosphate backbone, we bring 4, 8, and 16 Cy5s in close proximity by assembling four-armed junctions. We elucidate their structure via gel electrophoresis and steady-state and transient optical spectroscopy. We find that Cy5 has a strong propensity to form tetramer clusters, where the exciton is delocalized over all 4 Cy5s, that the exciton is not delocalized beyond tetramer clusters in the 8 and 16 Cy5 constructs, and that the 16 Cy5 construct may consist of pairs of tetramer clusters that are isolated from one another. Many-dye aggregates such as these may serve useful as antennae for their intense light absorption and spatially directed energy transfer.

6.
Nanoscale ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044540

RESUMO

Correction for 'Towards control of excitonic coupling in DNA-templated Cy5 aggregates: the principal role of chemical substituent hydrophobicity and steric interactions' by Sebastián A. Díaz et al., Nanoscale, 2023, 15, 3284-3299. https://doi.org/10.1039/D2NR05544A.

7.
Nanoscale ; 15(7): 3284-3299, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723027

RESUMO

Understanding and controlling exciton coupling in dye aggregates has become a greater focus as potential applications such as coherent exciton devices, nanophotonics, and biosensing have been proposed. DNA nanostructure templates allow for a powerful modular approach. Using DNA Holliday junction (HJ) templates variations of dye combinations and precision dye positions can be rapidly assayed, as well as creating aggregates of dyes that could not be prepared (either due to excess or lack of solubility) through alternative means. Indodicarbocyanines (Cy5) have been studied in coupled systems due to their large transition dipole moment, which contributes to strong coupling. Cy5-R dyes were recently prepared by chemically modifying the 5,5'-substituents of indole rings, resulting in varying dye hydrophobicity/hydrophilicity, steric considerations, and electron-donating/withdrawing character. We utilized Cy5-R dyes to examine the formation and properties of 30 unique DNA templated homodimers. We find that in our system the sterics of Cy5-R dyes play the determining factor in orientation and coupling strength of dimers, with coupling strengths ranging from 50-138 meV. The hydrophobic properties of the Cy5-R modify the percentage of dimers formed, and have a secondary role in determining the packing characteristics of the dimers when sterics are equivalent. Similar to other reports, we find that positioning of the Cy5-R within the HJ template can favor particular dimer interactions, specifically oblique or H-type dimers.


Assuntos
Corantes , DNA , DNA/química , Carbocianinas/química , DNA Cruciforme
8.
J Phys Chem Lett ; 13(46): 10688-10696, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36355575

RESUMO

While only one enantiomer of chiral biomolecules performs a biological function, access to both enantiomers (or enantiomorphs) proved to be advantageous for technology. Using dye covalent attachment to a DNA Holliday junction (HJ), we created two pairs of dimers of bis(chloroindolenine)squaraine dye that enabled strongly coupled molecular excitons of opposite chirality in solution. The exciton chirality inversion was achieved by interchanging single covalent linkers of unequal length tethering the dyes of each dimer to the HJ core. Dimers in each pair exhibited profound exciton-coupled circular dichroism (CD) couplets of opposite signs. Dimer geometries, modeled by simultaneous fitting absorption and CD spectra, were related in each pair as nonsuperimposable and nearly exact mirror images. The origin of observed exciton chirality inversion was explained in the view of isomerization of the stacked Holliday junction. This study will open new opportunities for creating excitonic DNA-based materials that rely on programmable system chirality.


Assuntos
Corantes , DNA Cruciforme , DNA , Dicroísmo Circular , Estereoisomerismo
9.
J Phys Chem Lett ; 13(12): 2782-2791, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35319215

RESUMO

Molecular excitons, which propagate spatially via electronic energy transfer, are central to numerous applications including light harvesting, organic optoelectronics, and nanoscale computing; they may also benefit applications such as photothermal therapy and photoacoustic imaging through the local generation of heat via rapid excited-state quenching. Here we show how to tune between energy transfer and quenching for heterodimers of the same pair of cyanine dyes by altering their spatial configuration on a DNA template. We assemble "transverse" and "adjacent" heterodimers of Cy5 and Cy5.5 using DNA Holliday junctions. We find that the transverse heterodimers exhibit optical properties consistent with excitonically interacting dyes and fluorescence quenching, while the adjacent heterodimers exhibit optical properties consistent with nonexcitonically interacting dyes and disproportionately large Cy5.5 emission, suggestive of energy transfer between dyes. We use transient absorption spectroscopy to show that quenching in the transverse heterodimer occurs via rapid nonradiative decay to the ground state (∼31 ps) and that in the adjacent heterodimer rapid energy transfer from Cy5 to Cy5.5 (∼420 fs) is followed by Cy5.5 excited-state relaxation (∼700 ps). Accessing such drastically different photophysics, which may be tuned on demand for different target applications, highlights the utility of DNA as a template for dye aggregation.


Assuntos
DNA , Corantes Fluorescentes , DNA/química , Replicação do DNA , Transferência de Energia , Corantes Fluorescentes/química , Análise Espectral
10.
J Phys Chem C Nanomater Interfaces ; 126(40): 17164-17175, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36268205

RESUMO

Molecular excitons are useful for applications in light harvesting, organic optoelectronics, and nanoscale computing. Electronic energy transfer (EET) is a process central to the function of devices based on molecular excitons. Achieving EET with a high quantum efficiency is a common obstacle to excitonic devices, often owing to the lack of donor and acceptor molecules that exhibit favorable spectral overlap. EET quantum efficiencies may be substantially improved through the use of heteroaggregates-aggregates of chemically distinct dyes-rather than individual dyes as energy relay units. However, controlling the assembly of heteroaggregates remains a significant challenge. Here, we use DNA Holliday junctions to assemble homo- and heterotetramer aggregates of the prototypical cyanine dyes Cy5 and Cy5.5. In addition to permitting control over the number of dyes within an aggregate, DNA-templated assembly confers control over aggregate composition, i.e., the ratio of constituent Cy5 and Cy5.5 dyes. By varying the ratio of Cy5 and Cy5.5, we show that the most intense absorption feature of the resulting tetramer can be shifted in energy over a range of almost 200 meV (1600 cm-1). All tetramers pack in the form of H-aggregates and exhibit quenched emission and drastically reduced excited-state lifetimes compared to the monomeric dyes. We apply a purely electronic exciton theory model to describe the observed progression of the absorption spectra. This model agrees with both the measured data and a more sophisticated vibronic model of the absorption and circular dichroism spectra, indicating that Cy5 and Cy5.5 heteroaggregates are largely described by molecular exciton theory. Finally, we extend the purely electronic exciton model to describe an idealized J-aggregate based on Förster resonance energy transfer (FRET) and discuss the potential advantages of such a device over traditional FRET relays.

11.
J Phys Chem B ; 125(36): 10240-10259, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34473494

RESUMO

DNA-templated molecular (dye) aggregates are a novel class of materials that have garnered attention in a broad range of areas including light harvesting, sensing, and computing. Using DNA to template dye aggregation is attractive due to the relative ease with which DNA nanostructures can be assembled in solution, the diverse array of nanostructures that can be assembled, and the ability to precisely position dyes to within a few Angstroms of one another. These factors, combined with the programmability of DNA, raise the prospect of designer materials custom tailored for specific applications. Although considerable progress has been made in characterizing the optical properties and associated electronic structures of these materials, less is known about their excited-state dynamics. For example, little is known about how the excited-state lifetime, a parameter essential to many applications, is influenced by structural factors, such as the number of dyes within the aggregate and their spatial arrangement. In this work, we use a combination of transient absorption spectroscopy and global target analysis to measure excited-state lifetimes in a series of DNA-templated cyanine dye aggregates. Specifically, we investigate six distinct dimer, trimer, and tetramer aggregates-based on the ubiquitous cyanine dye Cy5-templated using both duplex and Holliday junction DNA nanostructures. We find that these DNA-templated Cy5 aggregates all exhibit significantly reduced excited-state lifetimes, some by more than 2 orders of magnitude, and observe considerable variation among the lifetimes. We attribute the reduced excited-state lifetimes to enhanced nonradiative decay and proceed to discuss various structural factors, including exciton delocalization, dye separation, and DNA heterogeneity, that may contribute to the observed reduction and variability of excited-state lifetimes. Guided by insights from structural modeling, we find that the reduced lifetimes and enhanced nonradiative decay are most strongly correlated with the distance between the dyes. These results inform potential tradeoffs between dye separation, excitonic coupling strength, and excited-state lifetime that motivate deeper mechanistic understanding, potentially via further dye and dye template design.


Assuntos
Corantes , Quinolinas , DNA , Replicação do DNA , DNA Cruciforme
12.
J Phys Chem B ; 124(43): 9636-9647, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33052691

RESUMO

Exciton delocalization plays a prominent role in the photophysics of molecular aggregates, ultimately governing their particular function or application. Deoxyribonucleic acid (DNA) is a compelling scaffold in which to template molecular aggregates and promote exciton delocalization. As individual dye molecules are the basis of exciton delocalization in molecular aggregates, their judicious selection is important. Motivated by their excellent photostability and spectral properties, here, we examine the ability of squaraine dyes to undergo exciton delocalization when aggregated via a DNA Holliday junction (HJ) template. A commercially available indolenine squaraine dye was chosen for the study given its strong structural resemblance to Cy5, a commercially available cyanine dye previously shown to undergo exciton delocalization in DNA HJs. Three types of DNA-dye aggregate configurations-transverse dimer, adjacent dimer, and tetramer-were investigated. Signatures of exciton delocalization were observed in all squaraine-DNA aggregates. Specifically, strong blue shift and Davydov splitting were observed in steady-state absorption spectroscopy and exciton-induced features were evident in circular dichroism (CD) spectroscopy. Strongly suppressed fluorescence emission provided additional, indirect evidence for exciton delocalization in the DNA-templated squaraine dye aggregates. To quantitatively evaluate and directly compare the excitonic Coulombic coupling responsible for exciton delocalization, the strength of excitonic hopping interactions between the dyes was obtained by simultaneously fitting the experimental steady-state absorption and CD spectra via a Holstein-like Hamiltonian, in which, following the theoretical approach of Kühn, Renger, and May, the dominant vibrational mode is explicitly considered. The excitonic hopping strength within indolenine squaraines was found to be comparable to that of the analogous Cy5 DNA-templated aggregate. The squaraine aggregates adopted primarily an H-type (dyes oriented parallel to each other) spatial arrangement. Extracted geometric details of the dye mutual orientation in the aggregates enabled a close comparison of aggregate configurations and the elucidation of the influence of dye angular relationship on excitonic hopping interactions in squaraine aggregates. These results encourage the application of squaraine-based aggregates in next-generation systems driven by molecular excitons.


Assuntos
Ciclobutanos , DNA Cruciforme , Fluorescência , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA